Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import sys | |
| from dotenv import load_dotenv | |
| import shutil | |
| load_dotenv() | |
| os.environ["OMP_NUM_THREADS"] = "4" | |
| if sys.platform == "darwin": | |
| os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| import multiprocessing | |
| flag_vc = False | |
| def printt(strr, *args): | |
| if len(args) == 0: | |
| print(strr) | |
| else: | |
| print(strr % args) | |
| def phase_vocoder(a, b, fade_out, fade_in): | |
| window = torch.sqrt(fade_out * fade_in) | |
| fa = torch.fft.rfft(a * window) | |
| fb = torch.fft.rfft(b * window) | |
| absab = torch.abs(fa) + torch.abs(fb) | |
| n = a.shape[0] | |
| if n % 2 == 0: | |
| absab[1:-1] *= 2 | |
| else: | |
| absab[1:] *= 2 | |
| phia = torch.angle(fa) | |
| phib = torch.angle(fb) | |
| deltaphase = phib - phia | |
| deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5) | |
| w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase | |
| t = torch.arange(n).unsqueeze(-1).to(a) / n | |
| result = ( | |
| a * (fade_out**2) | |
| + b * (fade_in**2) | |
| + torch.sum(absab * torch.cos(w * t + phia), -1) * window / n | |
| ) | |
| return result | |
| class Harvest(multiprocessing.Process): | |
| def __init__(self, inp_q, opt_q): | |
| multiprocessing.Process.__init__(self) | |
| self.inp_q = inp_q | |
| self.opt_q = opt_q | |
| def run(self): | |
| import numpy as np | |
| import pyworld | |
| while 1: | |
| idx, x, res_f0, n_cpu, ts = self.inp_q.get() | |
| f0, t = pyworld.harvest( | |
| x.astype(np.double), | |
| fs=16000, | |
| f0_ceil=1100, | |
| f0_floor=50, | |
| frame_period=10, | |
| ) | |
| res_f0[idx] = f0 | |
| if len(res_f0.keys()) >= n_cpu: | |
| self.opt_q.put(ts) | |
| if __name__ == "__main__": | |
| import json | |
| import multiprocessing | |
| import re | |
| import threading | |
| import time | |
| import traceback | |
| from multiprocessing import Queue, cpu_count | |
| from queue import Empty | |
| import librosa | |
| from tools.torchgate import TorchGate | |
| import numpy as np | |
| import FreeSimpleGUI as sg | |
| import sounddevice as sd | |
| import torch | |
| import torch.nn.functional as F | |
| import torchaudio.transforms as tat | |
| from infer.lib import rtrvc as rvc_for_realtime | |
| from i18n.i18n import I18nAuto | |
| from configs.config import Config | |
| i18n = I18nAuto() | |
| # device = rvc_for_realtime.config.device | |
| # device = torch.device( | |
| # "cuda" | |
| # if torch.cuda.is_available() | |
| # else ("mps" if torch.backends.mps.is_available() else "cpu") | |
| # ) | |
| current_dir = os.getcwd() | |
| inp_q = Queue() | |
| opt_q = Queue() | |
| n_cpu = min(cpu_count(), 8) | |
| for _ in range(n_cpu): | |
| p = Harvest(inp_q, opt_q) | |
| p.daemon = True | |
| p.start() | |
| class GUIConfig: | |
| def __init__(self) -> None: | |
| self.pth_path: str = "" | |
| self.index_path: str = "" | |
| self.pitch: int = 0 | |
| self.formant=0.0 | |
| self.sr_type: str = "sr_model" | |
| self.block_time: float = 0.25 # s | |
| self.threhold: int = -60 | |
| self.crossfade_time: float = 0.05 | |
| self.extra_time: float = 2.5 | |
| self.I_noise_reduce: bool = False | |
| self.O_noise_reduce: bool = False | |
| self.use_pv: bool = False | |
| self.rms_mix_rate: float = 0.0 | |
| self.index_rate: float = 0.0 | |
| self.n_cpu: int = min(n_cpu, 4) | |
| self.f0method: str = "fcpe" | |
| self.sg_hostapi: str = "" | |
| self.wasapi_exclusive: bool = False | |
| self.sg_input_device: str = "" | |
| self.sg_output_device: str = "" | |
| class GUI: | |
| def __init__(self) -> None: | |
| self.gui_config = GUIConfig() | |
| self.config = Config() | |
| self.function = "vc" | |
| self.delay_time = 0 | |
| self.hostapis = None | |
| self.input_devices = None | |
| self.output_devices = None | |
| self.input_devices_indices = None | |
| self.output_devices_indices = None | |
| self.stream = None | |
| self.update_devices() | |
| self.launcher() | |
| def load(self): | |
| try: | |
| if not os.path.exists("configs/inuse/config.json"): | |
| shutil.copy("configs/config.json", "configs/inuse/config.json") | |
| with open("configs/inuse/config.json", "r") as j: | |
| data = json.load(j) | |
| data["sr_model"] = data["sr_type"] == "sr_model" | |
| data["sr_device"] = data["sr_type"] == "sr_device" | |
| data["pm"] = data["f0method"] == "pm" | |
| data["harvest"] = data["f0method"] == "harvest" | |
| data["crepe"] = data["f0method"] == "crepe" | |
| data["rmvpe"] = data["f0method"] == "rmvpe" | |
| data["fcpe"] = data["f0method"] == "fcpe" | |
| if data["sg_hostapi"] in self.hostapis: | |
| self.update_devices(hostapi_name=data["sg_hostapi"]) | |
| if ( | |
| data["sg_input_device"] not in self.input_devices | |
| or data["sg_output_device"] not in self.output_devices | |
| ): | |
| self.update_devices() | |
| data["sg_hostapi"] = self.hostapis[0] | |
| data["sg_input_device"] = self.input_devices[ | |
| self.input_devices_indices.index(sd.default.device[0]) | |
| ] | |
| data["sg_output_device"] = self.output_devices[ | |
| self.output_devices_indices.index(sd.default.device[1]) | |
| ] | |
| else: | |
| data["sg_hostapi"] = self.hostapis[0] | |
| data["sg_input_device"] = self.input_devices[ | |
| self.input_devices_indices.index(sd.default.device[0]) | |
| ] | |
| data["sg_output_device"] = self.output_devices[ | |
| self.output_devices_indices.index(sd.default.device[1]) | |
| ] | |
| except: | |
| with open("configs/inuse/config.json", "w") as j: | |
| data = { | |
| "pth_path": "", | |
| "index_path": "", | |
| "sg_hostapi": self.hostapis[0], | |
| "sg_wasapi_exclusive": False, | |
| "sg_input_device": self.input_devices[ | |
| self.input_devices_indices.index(sd.default.device[0]) | |
| ], | |
| "sg_output_device": self.output_devices[ | |
| self.output_devices_indices.index(sd.default.device[1]) | |
| ], | |
| "sr_type": "sr_model", | |
| "threhold": -60, | |
| "pitch": 0, | |
| "formant": 0.0, | |
| "index_rate": 0, | |
| "rms_mix_rate": 0, | |
| "block_time": 0.25, | |
| "crossfade_length": 0.05, | |
| "extra_time": 2.5, | |
| "n_cpu": 4, | |
| "f0method": "rmvpe", | |
| "use_jit": False, | |
| "use_pv": False, | |
| } | |
| data["sr_model"] = data["sr_type"] == "sr_model" | |
| data["sr_device"] = data["sr_type"] == "sr_device" | |
| data["pm"] = data["f0method"] == "pm" | |
| data["harvest"] = data["f0method"] == "harvest" | |
| data["crepe"] = data["f0method"] == "crepe" | |
| data["rmvpe"] = data["f0method"] == "rmvpe" | |
| data["fcpe"] = data["f0method"] == "fcpe" | |
| return data | |
| def launcher(self): | |
| data = self.load() | |
| self.config.use_jit = False # data.get("use_jit", self.config.use_jit) | |
| sg.theme("LightBlue3") | |
| layout = [ | |
| [ | |
| sg.Frame( | |
| title=i18n("加载模型"), | |
| layout=[ | |
| [ | |
| sg.Input( | |
| default_text=data.get("pth_path", ""), | |
| key="pth_path", | |
| ), | |
| sg.FileBrowse( | |
| i18n("选择.pth文件"), | |
| initial_folder=os.path.join( | |
| os.getcwd(), "assets/weights" | |
| ), | |
| file_types=((". pth"),), | |
| ), | |
| ], | |
| [ | |
| sg.Input( | |
| default_text=data.get("index_path", ""), | |
| key="index_path", | |
| ), | |
| sg.FileBrowse( | |
| i18n("选择.index文件"), | |
| initial_folder=os.path.join(os.getcwd(), "logs"), | |
| file_types=((". index"),), | |
| ), | |
| ], | |
| ], | |
| ) | |
| ], | |
| [ | |
| sg.Frame( | |
| layout=[ | |
| [ | |
| sg.Text(i18n("设备类型")), | |
| sg.Combo( | |
| self.hostapis, | |
| key="sg_hostapi", | |
| default_value=data.get("sg_hostapi", ""), | |
| enable_events=True, | |
| size=(20, 1), | |
| ), | |
| sg.Checkbox( | |
| i18n("独占 WASAPI 设备"), | |
| key="sg_wasapi_exclusive", | |
| default=data.get("sg_wasapi_exclusive", False), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("输入设备")), | |
| sg.Combo( | |
| self.input_devices, | |
| key="sg_input_device", | |
| default_value=data.get("sg_input_device", ""), | |
| enable_events=True, | |
| size=(45, 1), | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("输出设备")), | |
| sg.Combo( | |
| self.output_devices, | |
| key="sg_output_device", | |
| default_value=data.get("sg_output_device", ""), | |
| enable_events=True, | |
| size=(45, 1), | |
| ), | |
| ], | |
| [ | |
| sg.Button(i18n("重载设备列表"), key="reload_devices"), | |
| sg.Radio( | |
| i18n("使用模型采样率"), | |
| "sr_type", | |
| key="sr_model", | |
| default=data.get("sr_model", True), | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| i18n("使用设备采样率"), | |
| "sr_type", | |
| key="sr_device", | |
| default=data.get("sr_device", False), | |
| enable_events=True, | |
| ), | |
| sg.Text(i18n("采样率:")), | |
| sg.Text("", key="sr_stream"), | |
| ], | |
| ], | |
| title=i18n("音频设备"), | |
| ) | |
| ], | |
| [ | |
| sg.Frame( | |
| layout=[ | |
| [ | |
| sg.Text(i18n("响应阈值")), | |
| sg.Slider( | |
| range=(-60, 0), | |
| key="threhold", | |
| resolution=1, | |
| orientation="h", | |
| default_value=data.get("threhold", -60), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("音调设置")), | |
| sg.Slider( | |
| range=(-16, 16), | |
| key="pitch", | |
| resolution=1, | |
| orientation="h", | |
| default_value=data.get("pitch", 0), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("性别因子/声线粗细")), | |
| sg.Slider( | |
| range=(-2, 2), | |
| key="formant", | |
| resolution=0.05, | |
| orientation="h", | |
| default_value=data.get("formant", 0.0), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("Index Rate")), | |
| sg.Slider( | |
| range=(0.0, 1.0), | |
| key="index_rate", | |
| resolution=0.01, | |
| orientation="h", | |
| default_value=data.get("index_rate", 0), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("响度因子")), | |
| sg.Slider( | |
| range=(0.0, 1.0), | |
| key="rms_mix_rate", | |
| resolution=0.01, | |
| orientation="h", | |
| default_value=data.get("rms_mix_rate", 0), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("音高算法")), | |
| sg.Radio( | |
| "pm", | |
| "f0method", | |
| key="pm", | |
| default=data.get("pm", False), | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| "harvest", | |
| "f0method", | |
| key="harvest", | |
| default=data.get("harvest", False), | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| "crepe", | |
| "f0method", | |
| key="crepe", | |
| default=data.get("crepe", False), | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| "rmvpe", | |
| "f0method", | |
| key="rmvpe", | |
| default=data.get("rmvpe", False), | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| "fcpe", | |
| "f0method", | |
| key="fcpe", | |
| default=data.get("fcpe", True), | |
| enable_events=True, | |
| ), | |
| ], | |
| ], | |
| title=i18n("常规设置"), | |
| ), | |
| sg.Frame( | |
| layout=[ | |
| [ | |
| sg.Text(i18n("采样长度")), | |
| sg.Slider( | |
| range=(0.02, 1.5), | |
| key="block_time", | |
| resolution=0.01, | |
| orientation="h", | |
| default_value=data.get("block_time", 0.25), | |
| enable_events=True, | |
| ), | |
| ], | |
| # [ | |
| # sg.Text("设备延迟"), | |
| # sg.Slider( | |
| # range=(0, 1), | |
| # key="device_latency", | |
| # resolution=0.001, | |
| # orientation="h", | |
| # default_value=data.get("device_latency", 0.1), | |
| # enable_events=True, | |
| # ), | |
| # ], | |
| [ | |
| sg.Text(i18n("harvest进程数")), | |
| sg.Slider( | |
| range=(1, n_cpu), | |
| key="n_cpu", | |
| resolution=1, | |
| orientation="h", | |
| default_value=data.get( | |
| "n_cpu", min(self.gui_config.n_cpu, n_cpu) | |
| ), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("淡入淡出长度")), | |
| sg.Slider( | |
| range=(0.01, 0.15), | |
| key="crossfade_length", | |
| resolution=0.01, | |
| orientation="h", | |
| default_value=data.get("crossfade_length", 0.05), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Text(i18n("额外推理时长")), | |
| sg.Slider( | |
| range=(0.05, 5.00), | |
| key="extra_time", | |
| resolution=0.01, | |
| orientation="h", | |
| default_value=data.get("extra_time", 2.5), | |
| enable_events=True, | |
| ), | |
| ], | |
| [ | |
| sg.Checkbox( | |
| i18n("输入降噪"), | |
| key="I_noise_reduce", | |
| enable_events=True, | |
| ), | |
| sg.Checkbox( | |
| i18n("输出降噪"), | |
| key="O_noise_reduce", | |
| enable_events=True, | |
| ), | |
| sg.Checkbox( | |
| i18n("启用相位声码器"), | |
| key="use_pv", | |
| default=data.get("use_pv", False), | |
| enable_events=True, | |
| ), | |
| # sg.Checkbox( | |
| # "JIT加速", | |
| # default=self.config.use_jit, | |
| # key="use_jit", | |
| # enable_events=False, | |
| # ), | |
| ], | |
| # [sg.Text("注:首次使用JIT加速时,会出现卡顿,\n 并伴随一些噪音,但这是正常现象!")], | |
| ], | |
| title=i18n("性能设置"), | |
| ), | |
| ], | |
| [ | |
| sg.Button(i18n("开始音频转换"), key="start_vc"), | |
| sg.Button(i18n("停止音频转换"), key="stop_vc"), | |
| sg.Radio( | |
| i18n("输入监听"), | |
| "function", | |
| key="im", | |
| default=False, | |
| enable_events=True, | |
| ), | |
| sg.Radio( | |
| i18n("输出变声"), | |
| "function", | |
| key="vc", | |
| default=True, | |
| enable_events=True, | |
| ), | |
| sg.Text(i18n("算法延迟(ms):")), | |
| sg.Text("0", key="delay_time"), | |
| sg.Text(i18n("推理时间(ms):")), | |
| sg.Text("0", key="infer_time"), | |
| ], | |
| ] | |
| self.window = sg.Window("RVC - GUI", layout=layout, finalize=True) | |
| self.event_handler() | |
| def event_handler(self): | |
| global flag_vc | |
| while True: | |
| event, values = self.window.read() | |
| if event == sg.WINDOW_CLOSED: | |
| self.stop_stream() | |
| exit() | |
| if event == "reload_devices" or event == "sg_hostapi": | |
| self.gui_config.sg_hostapi = values["sg_hostapi"] | |
| self.update_devices(hostapi_name=values["sg_hostapi"]) | |
| if self.gui_config.sg_hostapi not in self.hostapis: | |
| self.gui_config.sg_hostapi = self.hostapis[0] | |
| self.window["sg_hostapi"].Update(values=self.hostapis) | |
| self.window["sg_hostapi"].Update(value=self.gui_config.sg_hostapi) | |
| if ( | |
| self.gui_config.sg_input_device not in self.input_devices | |
| and len(self.input_devices) > 0 | |
| ): | |
| self.gui_config.sg_input_device = self.input_devices[0] | |
| self.window["sg_input_device"].Update(values=self.input_devices) | |
| self.window["sg_input_device"].Update( | |
| value=self.gui_config.sg_input_device | |
| ) | |
| if self.gui_config.sg_output_device not in self.output_devices: | |
| self.gui_config.sg_output_device = self.output_devices[0] | |
| self.window["sg_output_device"].Update(values=self.output_devices) | |
| self.window["sg_output_device"].Update( | |
| value=self.gui_config.sg_output_device | |
| ) | |
| if event == "start_vc" and not flag_vc: | |
| if self.set_values(values) == True: | |
| printt("cuda_is_available: %s", torch.cuda.is_available()) | |
| self.start_vc() | |
| settings = { | |
| "pth_path": values["pth_path"], | |
| "index_path": values["index_path"], | |
| "sg_hostapi": values["sg_hostapi"], | |
| "sg_wasapi_exclusive": values["sg_wasapi_exclusive"], | |
| "sg_input_device": values["sg_input_device"], | |
| "sg_output_device": values["sg_output_device"], | |
| "sr_type": ["sr_model", "sr_device"][ | |
| [ | |
| values["sr_model"], | |
| values["sr_device"], | |
| ].index(True) | |
| ], | |
| "threhold": values["threhold"], | |
| "pitch": values["pitch"], | |
| "rms_mix_rate": values["rms_mix_rate"], | |
| "index_rate": values["index_rate"], | |
| # "device_latency": values["device_latency"], | |
| "block_time": values["block_time"], | |
| "crossfade_length": values["crossfade_length"], | |
| "extra_time": values["extra_time"], | |
| "n_cpu": values["n_cpu"], | |
| # "use_jit": values["use_jit"], | |
| "use_jit": False, | |
| "use_pv": values["use_pv"], | |
| "f0method": ["pm", "harvest", "crepe", "rmvpe", "fcpe"][ | |
| [ | |
| values["pm"], | |
| values["harvest"], | |
| values["crepe"], | |
| values["rmvpe"], | |
| values["fcpe"], | |
| ].index(True) | |
| ], | |
| } | |
| with open("configs/inuse/config.json", "w") as j: | |
| json.dump(settings, j) | |
| if self.stream is not None: | |
| self.delay_time = ( | |
| self.stream.latency[-1] | |
| + values["block_time"] | |
| + values["crossfade_length"] | |
| + 0.01 | |
| ) | |
| if values["I_noise_reduce"]: | |
| self.delay_time += min(values["crossfade_length"], 0.04) | |
| self.window["sr_stream"].update(self.gui_config.samplerate) | |
| self.window["delay_time"].update( | |
| int(np.round(self.delay_time * 1000)) | |
| ) | |
| # Parameter hot update | |
| if event == "threhold": | |
| self.gui_config.threhold = values["threhold"] | |
| elif event == "pitch": | |
| self.gui_config.pitch = values["pitch"] | |
| if hasattr(self, "rvc"): | |
| self.rvc.change_key(values["pitch"]) | |
| elif event == "formant": | |
| self.gui_config.formant = values["formant"] | |
| if hasattr(self, "rvc"): | |
| self.rvc.change_formant(values["formant"]) | |
| elif event == "index_rate": | |
| self.gui_config.index_rate = values["index_rate"] | |
| if hasattr(self, "rvc"): | |
| self.rvc.change_index_rate(values["index_rate"]) | |
| elif event == "rms_mix_rate": | |
| self.gui_config.rms_mix_rate = values["rms_mix_rate"] | |
| elif event in ["pm", "harvest", "crepe", "rmvpe", "fcpe"]: | |
| self.gui_config.f0method = event | |
| elif event == "I_noise_reduce": | |
| self.gui_config.I_noise_reduce = values["I_noise_reduce"] | |
| if self.stream is not None: | |
| self.delay_time += ( | |
| 1 if values["I_noise_reduce"] else -1 | |
| ) * min(values["crossfade_length"], 0.04) | |
| self.window["delay_time"].update( | |
| int(np.round(self.delay_time * 1000)) | |
| ) | |
| elif event == "O_noise_reduce": | |
| self.gui_config.O_noise_reduce = values["O_noise_reduce"] | |
| elif event == "use_pv": | |
| self.gui_config.use_pv = values["use_pv"] | |
| elif event in ["vc", "im"]: | |
| self.function = event | |
| elif event == "stop_vc" or event != "start_vc": | |
| # Other parameters do not support hot update | |
| self.stop_stream() | |
| def set_values(self, values): | |
| if len(values["pth_path"].strip()) == 0: | |
| sg.popup(i18n("请选择pth文件")) | |
| return False | |
| if len(values["index_path"].strip()) == 0: | |
| sg.popup(i18n("请选择index文件")) | |
| return False | |
| pattern = re.compile("[^\x00-\x7F]+") | |
| if pattern.findall(values["pth_path"]): | |
| sg.popup(i18n("pth文件路径不可包含中文")) | |
| return False | |
| if pattern.findall(values["index_path"]): | |
| sg.popup(i18n("index文件路径不可包含中文")) | |
| return False | |
| self.set_devices(values["sg_input_device"], values["sg_output_device"]) | |
| self.config.use_jit = False # values["use_jit"] | |
| # self.device_latency = values["device_latency"] | |
| self.gui_config.sg_hostapi = values["sg_hostapi"] | |
| self.gui_config.sg_wasapi_exclusive = values["sg_wasapi_exclusive"] | |
| self.gui_config.sg_input_device = values["sg_input_device"] | |
| self.gui_config.sg_output_device = values["sg_output_device"] | |
| self.gui_config.pth_path = values["pth_path"] | |
| self.gui_config.index_path = values["index_path"] | |
| self.gui_config.sr_type = ["sr_model", "sr_device"][ | |
| [ | |
| values["sr_model"], | |
| values["sr_device"], | |
| ].index(True) | |
| ] | |
| self.gui_config.threhold = values["threhold"] | |
| self.gui_config.pitch = values["pitch"] | |
| self.gui_config.formant = values["formant"] | |
| self.gui_config.block_time = values["block_time"] | |
| self.gui_config.crossfade_time = values["crossfade_length"] | |
| self.gui_config.extra_time = values["extra_time"] | |
| self.gui_config.I_noise_reduce = values["I_noise_reduce"] | |
| self.gui_config.O_noise_reduce = values["O_noise_reduce"] | |
| self.gui_config.use_pv = values["use_pv"] | |
| self.gui_config.rms_mix_rate = values["rms_mix_rate"] | |
| self.gui_config.index_rate = values["index_rate"] | |
| self.gui_config.n_cpu = values["n_cpu"] | |
| self.gui_config.f0method = ["pm", "harvest", "crepe", "rmvpe", "fcpe"][ | |
| [ | |
| values["pm"], | |
| values["harvest"], | |
| values["crepe"], | |
| values["rmvpe"], | |
| values["fcpe"], | |
| ].index(True) | |
| ] | |
| return True | |
| def start_vc(self): | |
| torch.cuda.empty_cache() | |
| self.rvc = rvc_for_realtime.RVC( | |
| self.gui_config.pitch, | |
| self.gui_config.formant, | |
| self.gui_config.pth_path, | |
| self.gui_config.index_path, | |
| self.gui_config.index_rate, | |
| self.gui_config.n_cpu, | |
| inp_q, | |
| opt_q, | |
| self.config, | |
| self.rvc if hasattr(self, "rvc") else None, | |
| ) | |
| self.gui_config.samplerate = ( | |
| self.rvc.tgt_sr | |
| if self.gui_config.sr_type == "sr_model" | |
| else self.get_device_samplerate() | |
| ) | |
| self.gui_config.channels = self.get_device_channels() | |
| self.zc = self.gui_config.samplerate // 100 | |
| self.block_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.block_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.block_frame_16k = 160 * self.block_frame // self.zc | |
| self.crossfade_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.crossfade_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc) | |
| self.sola_search_frame = self.zc | |
| self.extra_frame = ( | |
| int( | |
| np.round( | |
| self.gui_config.extra_time | |
| * self.gui_config.samplerate | |
| / self.zc | |
| ) | |
| ) | |
| * self.zc | |
| ) | |
| self.input_wav: torch.Tensor = torch.zeros( | |
| self.extra_frame | |
| + self.crossfade_frame | |
| + self.sola_search_frame | |
| + self.block_frame, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| self.input_wav_denoise: torch.Tensor = self.input_wav.clone() | |
| self.input_wav_res: torch.Tensor = torch.zeros( | |
| 160 * self.input_wav.shape[0] // self.zc, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| self.rms_buffer: np.ndarray = np.zeros(4 * self.zc, dtype="float32") | |
| self.sola_buffer: torch.Tensor = torch.zeros( | |
| self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 | |
| ) | |
| self.nr_buffer: torch.Tensor = self.sola_buffer.clone() | |
| self.output_buffer: torch.Tensor = self.input_wav.clone() | |
| self.skip_head = self.extra_frame // self.zc | |
| self.return_length = ( | |
| self.block_frame + self.sola_buffer_frame + self.sola_search_frame | |
| ) // self.zc | |
| self.fade_in_window: torch.Tensor = ( | |
| torch.sin( | |
| 0.5 | |
| * np.pi | |
| * torch.linspace( | |
| 0.0, | |
| 1.0, | |
| steps=self.sola_buffer_frame, | |
| device=self.config.device, | |
| dtype=torch.float32, | |
| ) | |
| ) | |
| ** 2 | |
| ) | |
| self.fade_out_window: torch.Tensor = 1 - self.fade_in_window | |
| self.resampler = tat.Resample( | |
| orig_freq=self.gui_config.samplerate, | |
| new_freq=16000, | |
| dtype=torch.float32, | |
| ).to(self.config.device) | |
| if self.rvc.tgt_sr != self.gui_config.samplerate: | |
| self.resampler2 = tat.Resample( | |
| orig_freq=self.rvc.tgt_sr, | |
| new_freq=self.gui_config.samplerate, | |
| dtype=torch.float32, | |
| ).to(self.config.device) | |
| else: | |
| self.resampler2 = None | |
| self.tg = TorchGate( | |
| sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 | |
| ).to(self.config.device) | |
| self.start_stream() | |
| def start_stream(self): | |
| global flag_vc | |
| if not flag_vc: | |
| flag_vc = True | |
| if ( | |
| "WASAPI" in self.gui_config.sg_hostapi | |
| and self.gui_config.sg_wasapi_exclusive | |
| ): | |
| extra_settings = sd.WasapiSettings(exclusive=True) | |
| else: | |
| extra_settings = None | |
| self.stream = sd.Stream( | |
| callback=self.audio_callback, | |
| blocksize=self.block_frame, | |
| samplerate=self.gui_config.samplerate, | |
| channels=self.gui_config.channels, | |
| dtype="float32", | |
| extra_settings=extra_settings, | |
| ) | |
| self.stream.start() | |
| def stop_stream(self): | |
| global flag_vc | |
| if flag_vc: | |
| flag_vc = False | |
| if self.stream is not None: | |
| self.stream.abort() | |
| self.stream.close() | |
| self.stream = None | |
| def audio_callback( | |
| self, indata: np.ndarray, outdata: np.ndarray, frames, times, status | |
| ): | |
| """ | |
| 音频处理 | |
| """ | |
| global flag_vc | |
| start_time = time.perf_counter() | |
| indata = librosa.to_mono(indata.T) | |
| if self.gui_config.threhold > -60: | |
| indata = np.append(self.rms_buffer, indata) | |
| rms = librosa.feature.rms( | |
| y=indata, frame_length=4 * self.zc, hop_length=self.zc | |
| )[:, 2:] | |
| self.rms_buffer[:] = indata[-4 * self.zc :] | |
| indata = indata[2 * self.zc - self.zc // 2 :] | |
| db_threhold = ( | |
| librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold | |
| ) | |
| for i in range(db_threhold.shape[0]): | |
| if db_threhold[i]: | |
| indata[i * self.zc : (i + 1) * self.zc] = 0 | |
| indata = indata[self.zc // 2 :] | |
| self.input_wav[: -self.block_frame] = self.input_wav[ | |
| self.block_frame : | |
| ].clone() | |
| self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to( | |
| self.config.device | |
| ) | |
| self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[ | |
| self.block_frame_16k : | |
| ].clone() | |
| # input noise reduction and resampling | |
| if self.gui_config.I_noise_reduce: | |
| self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[ | |
| self.block_frame : | |
| ].clone() | |
| input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :] | |
| input_wav = self.tg( | |
| input_wav.unsqueeze(0), self.input_wav.unsqueeze(0) | |
| ).squeeze(0) | |
| input_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
| input_wav[: self.sola_buffer_frame] += ( | |
| self.nr_buffer * self.fade_out_window | |
| ) | |
| self.input_wav_denoise[-self.block_frame :] = input_wav[ | |
| : self.block_frame | |
| ] | |
| self.nr_buffer[:] = input_wav[self.block_frame :] | |
| self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( | |
| self.input_wav_denoise[-self.block_frame - 2 * self.zc :] | |
| )[160:] | |
| else: | |
| self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = ( | |
| self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[ | |
| 160: | |
| ] | |
| ) | |
| # infer | |
| if self.function == "vc": | |
| infer_wav = self.rvc.infer( | |
| self.input_wav_res, | |
| self.block_frame_16k, | |
| self.skip_head, | |
| self.return_length, | |
| self.gui_config.f0method, | |
| ) | |
| if self.resampler2 is not None: | |
| infer_wav = self.resampler2(infer_wav) | |
| elif self.gui_config.I_noise_reduce: | |
| infer_wav = self.input_wav_denoise[self.extra_frame :].clone() | |
| else: | |
| infer_wav = self.input_wav[self.extra_frame :].clone() | |
| # output noise reduction | |
| if self.gui_config.O_noise_reduce and self.function == "vc": | |
| self.output_buffer[: -self.block_frame] = self.output_buffer[ | |
| self.block_frame : | |
| ].clone() | |
| self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] | |
| infer_wav = self.tg( | |
| infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0) | |
| ).squeeze(0) | |
| # volume envelop mixing | |
| if self.gui_config.rms_mix_rate < 1 and self.function == "vc": | |
| if self.gui_config.I_noise_reduce: | |
| input_wav = self.input_wav_denoise[self.extra_frame :] | |
| else: | |
| input_wav = self.input_wav[self.extra_frame :] | |
| rms1 = librosa.feature.rms( | |
| y=input_wav[: infer_wav.shape[0]].cpu().numpy(), | |
| frame_length=4 * self.zc, | |
| hop_length=self.zc, | |
| ) | |
| rms1 = torch.from_numpy(rms1).to(self.config.device) | |
| rms1 = F.interpolate( | |
| rms1.unsqueeze(0), | |
| size=infer_wav.shape[0] + 1, | |
| mode="linear", | |
| align_corners=True, | |
| )[0, 0, :-1] | |
| rms2 = librosa.feature.rms( | |
| y=infer_wav[:].cpu().numpy(), | |
| frame_length=4 * self.zc, | |
| hop_length=self.zc, | |
| ) | |
| rms2 = torch.from_numpy(rms2).to(self.config.device) | |
| rms2 = F.interpolate( | |
| rms2.unsqueeze(0), | |
| size=infer_wav.shape[0] + 1, | |
| mode="linear", | |
| align_corners=True, | |
| )[0, 0, :-1] | |
| rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) | |
| infer_wav *= torch.pow( | |
| rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate) | |
| ) | |
| # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
| conv_input = infer_wav[ | |
| None, None, : self.sola_buffer_frame + self.sola_search_frame | |
| ] | |
| cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) | |
| cor_den = torch.sqrt( | |
| F.conv1d( | |
| conv_input**2, | |
| torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device), | |
| ) | |
| + 1e-8 | |
| ) | |
| if sys.platform == "darwin": | |
| _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) | |
| sola_offset = sola_offset.item() | |
| else: | |
| sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
| printt("sola_offset = %d", int(sola_offset)) | |
| infer_wav = infer_wav[sola_offset:] | |
| if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv: | |
| infer_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
| infer_wav[: self.sola_buffer_frame] += ( | |
| self.sola_buffer * self.fade_out_window | |
| ) | |
| else: | |
| infer_wav[: self.sola_buffer_frame] = phase_vocoder( | |
| self.sola_buffer, | |
| infer_wav[: self.sola_buffer_frame], | |
| self.fade_out_window, | |
| self.fade_in_window, | |
| ) | |
| self.sola_buffer[:] = infer_wav[ | |
| self.block_frame : self.block_frame + self.sola_buffer_frame | |
| ] | |
| outdata[:] = ( | |
| infer_wav[: self.block_frame] | |
| .repeat(self.gui_config.channels, 1) | |
| .t() | |
| .cpu() | |
| .numpy() | |
| ) | |
| total_time = time.perf_counter() - start_time | |
| if flag_vc: | |
| self.window["infer_time"].update(int(total_time * 1000)) | |
| printt("Infer time: %.2f", total_time) | |
| def update_devices(self, hostapi_name=None): | |
| """获取设备列表""" | |
| global flag_vc | |
| flag_vc = False | |
| sd._terminate() | |
| sd._initialize() | |
| devices = sd.query_devices() | |
| hostapis = sd.query_hostapis() | |
| for hostapi in hostapis: | |
| for device_idx in hostapi["devices"]: | |
| devices[device_idx]["hostapi_name"] = hostapi["name"] | |
| self.hostapis = [hostapi["name"] for hostapi in hostapis] | |
| if hostapi_name not in self.hostapis: | |
| hostapi_name = self.hostapis[0] | |
| self.input_devices = [ | |
| d["name"] | |
| for d in devices | |
| if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
| ] | |
| self.output_devices = [ | |
| d["name"] | |
| for d in devices | |
| if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
| ] | |
| self.input_devices_indices = [ | |
| d["index"] if "index" in d else d["name"] | |
| for d in devices | |
| if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
| ] | |
| self.output_devices_indices = [ | |
| d["index"] if "index" in d else d["name"] | |
| for d in devices | |
| if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
| ] | |
| def set_devices(self, input_device, output_device): | |
| """设置输出设备""" | |
| sd.default.device[0] = self.input_devices_indices[ | |
| self.input_devices.index(input_device) | |
| ] | |
| sd.default.device[1] = self.output_devices_indices[ | |
| self.output_devices.index(output_device) | |
| ] | |
| printt("Input device: %s:%s", str(sd.default.device[0]), input_device) | |
| printt("Output device: %s:%s", str(sd.default.device[1]), output_device) | |
| def get_device_samplerate(self): | |
| return int( | |
| sd.query_devices(device=sd.default.device[0])["default_samplerate"] | |
| ) | |
| def get_device_channels(self): | |
| max_input_channels = sd.query_devices(device=sd.default.device[0])[ | |
| "max_input_channels" | |
| ] | |
| max_output_channels = sd.query_devices(device=sd.default.device[1])[ | |
| "max_output_channels" | |
| ] | |
| return min(max_input_channels, max_output_channels, 2) | |
| gui = GUI() | |