Spaces:
Sleeping
Sleeping
import streamlit as st | |
import sounddevice as sd | |
import numpy as np | |
import speech_recognition as sr | |
import pyttsx3 | |
import threading | |
import io | |
from gradio_client import Client | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] # Store chat history | |
# Function to generate a response using Gradio client | |
def generate_response(query): | |
try: | |
client = Client("Gopikanth123/llama2") | |
result = client.predict(query=query, api_name="/predict") | |
return result | |
except Exception as e: | |
return f"Error communicating with the Gradio backend: {e}" | |
# Function to handle user input and bot response | |
def handle_user_input(user_input): | |
if user_input: | |
# Add user message to session state | |
st.session_state["messages"].append({"user": user_input}) | |
# Generate bot response | |
response = generate_response(user_input) | |
st.session_state["messages"].append({"bot": response}) | |
# Speak out bot response in a new thread to avoid blocking | |
threading.Thread(target=speak_text, args=(response,), daemon=True).start() | |
# Update chat history after each interaction | |
# update_chat_history() | |
# Function to speak text (Voice Output) | |
def speak_text(text): | |
engine = pyttsx3.init() | |
engine.stop() # Ensure no previous loop is running | |
engine.say(text) | |
engine.runAndWait() | |
# Function to update chat history dynamically | |
def update_chat_history(): | |
chat_history = st.session_state["messages"] | |
for msg in chat_history: | |
if "user" in msg: | |
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True) | |
if "bot" in msg: | |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True) | |
# Function to recognize speech using sounddevice | |
def recognize_speech_sounddevice(): | |
st.info("Listening... Speak into the microphone.") | |
fs = 16000 # Sample rate in Hz | |
duration = 5 # Duration in seconds | |
# Record the audio using sounddevice | |
audio_data = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16') | |
sd.wait() | |
# Convert the audio data to the format expected by speech_recognition | |
recognizer = sr.Recognizer() | |
audio = sr.AudioData(audio_data.tobytes(), fs, 2) | |
try: | |
recognized_text = recognizer.recognize_google(audio) | |
st.session_state["user_input"] = recognized_text | |
st.success(f"Recognized Text: {recognized_text}") | |
handle_user_input(recognized_text) | |
except sr.UnknownValueError: | |
st.error("Sorry, I couldn't understand the audio.") | |
except sr.RequestError: | |
st.error("Could not request results; please check your internet connection.") | |
# Main Streamlit app | |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="π€", layout="wide") | |
st.markdown( | |
""" | |
<style> | |
.stButton>button { | |
background-color: #6C63FF; | |
color: white; | |
font-size: 16px; | |
border-radius: 10px; | |
padding: 10px 20px; | |
} | |
.stTextInput>div>input { | |
border: 2px solid #6C63FF; | |
border-radius: 10px; | |
padding: 10px; | |
} | |
.chat-container { | |
background-color: #F7F9FC; | |
padding: 20px; | |
border-radius: 15px; | |
max-height: 400px; | |
overflow-y: auto; | |
} | |
.chat-bubble { | |
padding: 10px 15px; | |
border-radius: 15px; | |
margin: 5px 0; | |
max-width: 80%; | |
display: inline-block; | |
} | |
.user-message { | |
background-color: #D1C4E9; | |
text-align: left; | |
margin-left: auto; | |
} | |
.bot-message { | |
background-color: #BBDEFB; | |
text-align: left; | |
margin-right: auto; | |
} | |
.input-container { | |
display: flex; | |
justify-content: space-between; | |
gap: 10px; | |
padding: 10px 0; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.title("π€ Chat with Llama2 Bot") | |
st.markdown( | |
""" | |
Welcome to the *Llama2 Chatbot*! | |
- *Type* your message below, or | |
- *Use the microphone* to speak to the bot. | |
""" | |
) | |
# Display chat history | |
chat_history_container = st.container() | |
with chat_history_container: | |
# Add input field within a form | |
with st.form(key='input_form', clear_on_submit=True): | |
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?") | |
submit_button = st.form_submit_button("Send") | |
# Handle form submission | |
if submit_button: | |
handle_user_input(user_input) | |
# Separate button for speech recognition outside of the form | |
if st.button("Speak"): | |
recognize_speech_sounddevice() | |
st.markdown("### Chat History") | |
# Update chat history on every interaction | |
update_chat_history() |