Gopikanth123 commited on
Commit
528d5f2
·
verified ·
1 Parent(s): c1e5983

Upload 11 files

Browse files
1.jpeg ADDED
2.png ADDED
app.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ import gradio as gr
3
+ import os
4
+ from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
5
+ from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
+ from sentence_transformers import SentenceTransformer
8
+ import firebase_admin
9
+ from firebase_admin import db, credentials
10
+ import datetime
11
+ import uuid
12
+ import random
13
+
14
+ def select_random_name():
15
+ names = ['Clara', 'Lily']
16
+ return random.choice(names)
17
+
18
+ # Example usage
19
+ # Load environment variables
20
+ load_dotenv()
21
+ # authenticate to firebase
22
+ cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
23
+ firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
24
+ # Configure the Llama index settings
25
+ Settings.llm = HuggingFaceInferenceAPI(
26
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
27
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
28
+ context_window=3000,
29
+ token=os.getenv("HF_TOKEN"),
30
+ max_new_tokens=512,
31
+ generate_kwargs={"temperature": 0.1},
32
+ )
33
+ Settings.embed_model = HuggingFaceEmbedding(
34
+ model_name="BAAI/bge-small-en-v1.5"
35
+ )
36
+
37
+ # Define the directory for persistent storage and data
38
+ PERSIST_DIR = "db"
39
+ PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
40
+
41
+ # Ensure directories exist
42
+ os.makedirs(PDF_DIRECTORY, exist_ok=True)
43
+ os.makedirs(PERSIST_DIR, exist_ok=True)
44
+
45
+ # Variable to store current chat conversation
46
+ current_chat_history = []
47
+ kkk=select_random_name()
48
+ def data_ingestion_from_directory():
49
+ # Use SimpleDirectoryReader on the directory containing the PDF files
50
+ documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
51
+ storage_context = StorageContext.from_defaults()
52
+ index = VectorStoreIndex.from_documents(documents)
53
+ index.storage_context.persist(persist_dir=PERSIST_DIR)
54
+
55
+ def handle_query(query):
56
+ chat_text_qa_msgs = [
57
+ (
58
+ "user",
59
+ """
60
+ You are the Lily Ai doctor chatbot. Your goal is to provide accurate, and consicse medical diagnosis based on the patient's problem, constantly compare from given data set and compare from what doctor suggested. don't hesitate to reply 'it is out of scope question' if you cannot fetch the related answer.
61
+ {context_str}
62
+ Question:
63
+ {query_str}
64
+ """
65
+ )
66
+ ]
67
+ text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
68
+
69
+ # Load index from storage
70
+ storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
71
+ index = load_index_from_storage(storage_context)
72
+
73
+ # Use chat history to enhance response
74
+ context_str = ""
75
+ for past_query, response in reversed(current_chat_history):
76
+ if past_query.strip():
77
+ context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
78
+
79
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
80
+ answer = query_engine.query(query)
81
+
82
+ if hasattr(answer, 'response'):
83
+ response = answer.response
84
+ elif isinstance(answer, dict) and 'response' in answer:
85
+ response = answer['response']
86
+ else:
87
+ response = "Sorry, I couldn't find an answer."
88
+
89
+ # Update current chat history
90
+ current_chat_history.append((query, response))
91
+
92
+ return response
93
+
94
+ # Example usage: Process PDF ingestion from directory
95
+ print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
96
+ data_ingestion_from_directory()
97
+
98
+ # Define the function to handle predictions
99
+ """def predict(message,history):
100
+ response = handle_query(message)
101
+ return response"""
102
+
103
+ def predict(message, history):
104
+ logo_html = '''
105
+ <div class="circle-logo">
106
+ <img src="https://rb.gy/8r06eg" alt="FernAi">
107
+ </div>
108
+ '''
109
+ response = handle_query(message)
110
+ response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
111
+ return response_with_logo
112
+ def save_chat_message(session_id, message_data):
113
+ ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
114
+ ref.push().set(message_data)
115
+
116
+ # Define your Gradio chat interface function (replace with your actual logic)
117
+ def chat_interface(message, history):
118
+ try:
119
+ # Generate a unique session ID for this chat session
120
+ session_id = str(uuid.uuid4())
121
+
122
+ # Process the user message and generate a response (your chatbot logic)
123
+ response = handle_query(message)
124
+
125
+ # Capture the message data
126
+ message_data = {
127
+ "sender": "user",
128
+ "message": message,
129
+ "response": response,
130
+ "timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
131
+ }
132
+
133
+ # Call the save function to store in Firebase with the generated session ID
134
+ save_chat_message(session_id, message_data)
135
+
136
+ # Return the bot response
137
+ return response
138
+ except Exception as e:
139
+ return str(e)
140
+
141
+ # Custom CSS for styling
142
+ css = '''
143
+ .circle-logo {
144
+ display: inline-block;
145
+ width: 40px;
146
+ height: 40px;
147
+ border-radius: 50%;
148
+ overflow: hidden;
149
+ margin-right: 10px;
150
+ vertical-align: middle;
151
+ }
152
+ .circle-logo img {
153
+ width: 100%;
154
+ height: 100%;
155
+ object-fit: cover;
156
+ }
157
+ .response-with-logo {
158
+ display: flex;
159
+ align-items: center;
160
+ margin-bottom: 10px;
161
+ }
162
+ footer {
163
+ display: none !important;
164
+ background-color: #F8D7DA;
165
+ }
166
+ label.svelte-1b6s6s {display: none}
167
+ div.svelte-rk35yg {display: none;}
168
+ div.progress-text.svelte-z7cif2.meta-text {display: none;}
169
+
170
+
171
+ '''
172
+
173
+ gr.ChatInterface(chat_interface,
174
+ css=css,
175
+ description="Lily",
176
+ clear_btn=None, undo_btn=None, retry_btn=None,
177
+ ).launch()
data/Lesson-29.pdf ADDED
Binary file (298 kB). View file
 
db/default__vector_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"embedding_dict": {"860863cb-ba90-4287-9ff3-de812a7cf04a": [-0.04935232177376747, 0.014276032336056232, -0.00677516171708703, -0.007499701343476772, 0.0857427641749382, 0.03596746549010277, -0.06747723370790482, 0.035292088985443115, 0.0009802288841456175, 0.011373339220881462, 0.024754010140895844, -0.03062259964644909, 0.011178512126207352, 0.01658494584262371, -0.025193003937602043, 0.007735987193882465, -0.026199763640761375, -0.004099538084119558, 0.03002157434821129, 0.018483860418200493, 0.008464190177619457, -0.03511177375912666, 0.021300099790096283, 0.045198313891887665, 0.02103796787559986, 0.04658903181552887, -0.03597500920295715, -0.07936180382966995, -0.048395734280347824, -0.23985832929611206, 0.05988171696662903, 0.00787472166121006, 0.06542612612247467, 0.016137035563588142, -0.029961371794342995, 0.016481216996908188, -0.020172743126749992, 0.05845439434051514, 0.029444292187690735, 0.0327472984790802, -0.060793109238147736, -0.021447496488690376, -0.010194200091063976, -0.03895203024148941, 0.002724932273849845, -0.04428384453058243, -0.04992429539561272, -0.020091135054826736, -0.008397594094276428, 0.006678513251245022, -0.04897148534655571, -0.060120902955532074, 0.00495715020224452, 0.031236156821250916, -0.024438021704554558, -0.001887921360321343, 0.08040959388017654, 0.0212861318141222, 0.019926222041249275, 0.041057415306568146, 0.0645257979631424, 0.029546035453677177, -0.13904771208763123, 0.01744740828871727, 0.06266944855451584, 0.041324276477098465, -0.0977046936750412, -0.042026087641716, -0.02397708222270012, 0.000938264187425375, -0.031055675819516182, 0.022282985970377922, 0.039871398359537125, 0.011208692565560341, 0.059094201773405075, 0.01761738955974579, 0.03747517243027687, 0.002703616861253977, 0.015252131968736649, -0.0339764729142189, 0.034126173704862595, 0.05502382293343544, 0.020618971437215805, -0.030696270987391472, -0.013595390133559704, -0.02856854349374771, 0.0403427854180336, -0.02784808911383152, -0.004025080241262913, -0.011623065918684006, -0.023647073656320572, -0.021383848041296005, -0.03101491369307041, 0.05079283565282822, -0.04112066701054573, -0.03585713356733322, -0.02295582741498947, 0.0062613822519779205, 0.02795836143195629, 0.45919111371040344, 0.015642572194337845, 0.010819172486662865, -0.018927421420812607, 0.05333065986633301, -0.013381321914494038, -0.06688794493675232, 0.004536801483482122, -0.02615642547607422, -0.024168578907847404, -0.004391009919345379, 0.02736389823257923, 0.02036883682012558, -0.040253669023513794, -0.03790125250816345, 0.007962658070027828, -0.0071958815678954124, 0.049702417105436325, -0.01769251562654972, -0.007585907820612192, -0.012356655672192574, 0.008346965536475182, -0.025942832231521606, 0.030699746683239937, -0.031913790851831436, 0.05911710113286972, -0.05253056809306145, 0.03923376277089119, 0.08774489164352417, 0.038656190037727356, -0.001138997613452375, 0.027105676010251045, 0.027531057596206665, -0.08285865932703018, 0.01835499331355095, -0.00720310490578413, -0.030862700194120407, -0.0021355219651013613, -0.016528071835637093, 0.007597050163894892, 0.02883450873196125, -0.011319754645228386, 0.03828631341457367, -0.007711352314800024, -0.09212921559810638, -0.12980586290359497, 0.153176948428154, 0.011540068313479424, 0.03229355439543724, -0.036570385098457336, -0.05308893322944641, 0.04680844396352768, 0.07722964882850647, -0.019974086433649063, 0.01124553382396698, 0.03856383636593819, 0.031176432967185974, -0.019309746101498604, -0.023881902918219566, -0.020723534747958183, 0.03380262106657028, -0.018595557659864426, -0.030544748529791832, 0.021867908537387848, 0.10692565888166428, 0.01082476507872343, -0.032912179827690125, -0.007422571070492268, 0.044559549540281296, -0.02630840614438057, 0.006297847256064415, -0.005424784496426582, -0.043432921171188354, 0.018201762810349464, 0.016728423535823822, -0.03545304760336876, 0.036799076944589615, -0.00962867308408022, -0.01837957464158535, -0.005215011071413755, 0.006207386497408152, -0.003111738944426179, -0.014922741800546646, -0.07831963896751404, 0.011641087010502815, 0.03601595386862755, 0.01461033709347248, -0.018093876540660858, -0.01139074470847845, 0.004400675185024738, 0.06439895927906036, 0.043229930102825165, -0.05553846061229706, -0.007091710343956947, 0.03263641893863678, -0.01781558059155941, 0.010551278479397297, -0.010003015398979187, -0.005920502822846174, -0.0057300967164337635, -0.06755722314119339, 0.03704983368515968, 0.0756269097328186, 0.03213987126946449, 0.0392606295645237, -0.02188468724489212, 0.005344125907868147, -0.007023293059319258, 0.006461248733103275, 0.05830821394920349, 0.02524745464324951, -0.06875360757112503, 0.0077574849128723145, -0.008623662404716015, 0.017420368269085884, -0.014371651224792004, 0.01098068617284298, 0.015060738660395145, 0.0575602725148201, -0.015285676345229149, 0.055246952921152115, -0.0046562557108700275, -0.0018068264471367002, -0.017236808314919472, -0.3138227164745331, -0.03679979592561722, 0.025411024689674377, 0.04189690202474594, -0.01532608363777399, -0.0593300499022007, 0.007799589075148106, 0.017681816592812538, 0.004527967423200607, 0.014501117169857025, 0.03831024095416069, 0.0643090233206749, -0.06463051587343216, -0.06307888776063919, -0.018941743299365044, -0.014238502830266953, 0.007583525497466326, -0.017396165058016777, -0.032528795301914215, 0.04459691792726517, 0.016582539305090904, 0.002379573881626129, -0.0007301989244297147, -0.01501720491796732, 0.07269556820392609, -0.03588758409023285, 0.1032787337899208, -0.06350622326135635, 0.006171433720737696, 0.015278211794793606, -0.02456526644527912, 0.03500528261065483, -0.03471928462386131, -0.03898708149790764, 0.023004775866866112, -0.028884489089250565, -0.057739198207855225, -0.0035506936255842447, -0.019762180745601654, -0.039818767458200455, -0.020245185121893883, -0.001681070076301694, 0.03693488612771034, -0.08100935816764832, -0.03178160637617111, -0.030177531763911247, -0.020812533795833588, -0.014491626992821693, -0.01819487474858761, -0.00693318247795105, -0.025987470522522926, 0.0203871913254261, 0.03322084620594978, 0.007113815750926733, 0.01175146084278822, 0.011802028864622116, -0.04891163483262062, 0.03362104669213295, -0.07420346140861511, -0.07266935706138611, 0.00424754386767745, -0.05110837519168854, 0.03763461858034134, -0.0029107211157679558, -0.0017669596709311008, -0.009217919781804085, -0.0223727747797966, -0.02276541478931904, -0.005709769204258919, -0.018832406029105186, -0.018558891490101814, 0.09701454639434814, -3.134470171062276e-05, 0.013778149150311947, 0.025061175227165222, 0.06504049152135849, -0.0010301598813384771, -0.0897194966673851, -0.02937312051653862, -0.010941596701741219, 0.0018644781084731221, 0.05590954050421715, 0.026075152680277824, 0.05139530077576637, -0.010917403735220432, 0.00870157778263092, 0.015995193272829056, 0.006445177365094423, 0.04837393760681152, 0.025667952373623848, -0.008727463893592358, -0.029190072789788246, -0.018183276057243347, -0.0621129646897316, 0.020885098725557327, 0.06874728947877884, -0.23344504833221436, -0.02258511632680893, -0.01419254019856453, 0.10320448130369186, -0.005822952836751938, 0.0024899616837501526, 0.023092474788427353, -0.0038407070096582174, -0.013031963258981705, 0.03569323942065239, -0.049997638911008835, 0.029806140810251236, 0.009199211373925209, -0.058769576251506805, -0.03448537364602089, 0.04246056452393532, 0.07039237767457962, -0.04602818936109543, 0.06294197589159012, 0.004651046358048916, -0.001652638427913189, -0.03949356824159622, 0.12305214256048203, -0.02445746771991253, -0.04061185196042061, -0.0042878249660134315, 0.011829865165054798, -0.019710924476385117, 0.028901495039463043, 0.033081069588661194, -0.010725338943302631, -0.02745557762682438, 0.10162729769945145, 0.05656793341040611, 0.016987605020403862, 0.025119241327047348, 0.004949004389345646, -0.061499010771512985, 0.0024393266066908836, 0.01115493569523096, 0.026186874136328697, -0.03403957560658455, 0.015666430816054344, 0.018578195944428444, 0.054081711918115616, 0.009812631644308567, -0.008632104843854904, -0.08555403351783752, 0.00032727871439419687, 0.013853251934051514, -0.04474908858537674, -0.022167515009641647, -0.008224789053201675, 0.01202460192143917, 0.05611058324575424, 0.009806507267057896, 0.03089478611946106, 0.008607840165495872, -0.023285187780857086, -0.045362312346696854, 0.031830571591854095, -0.02046814002096653, 0.01958327554166317, -0.022897496819496155, -0.02404063194990158]}, "text_id_to_ref_doc_id": {"860863cb-ba90-4287-9ff3-de812a7cf04a": "ac226b84-1585-4759-add3-dc5d0af6ef65"}, "metadata_dict": {"860863cb-ba90-4287-9ff3-de812a7cf04a": {"page_label": "1", "file_name": "saved_pdf.pdf", "file_path": "E:\\llama-index RAG\\data\\saved_pdf.pdf", "file_type": "application/pdf", "file_size": 64903, "creation_date": "2024-04-14", "last_modified_date": "2024-04-17", "_node_type": "TextNode", "document_id": "ac226b84-1585-4759-add3-dc5d0af6ef65", "doc_id": "ac226b84-1585-4759-add3-dc5d0af6ef65", "ref_doc_id": "ac226b84-1585-4759-add3-dc5d0af6ef65"}}}
db/docstore.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"docstore/metadata": {"ac226b84-1585-4759-add3-dc5d0af6ef65": {"doc_hash": "2c629fa1f2e1e85f17b7d012739aea7cba30cdd55f935ed2225710942132eabf"}, "860863cb-ba90-4287-9ff3-de812a7cf04a": {"doc_hash": "2c629fa1f2e1e85f17b7d012739aea7cba30cdd55f935ed2225710942132eabf", "ref_doc_id": "ac226b84-1585-4759-add3-dc5d0af6ef65"}}, "docstore/data": {"860863cb-ba90-4287-9ff3-de812a7cf04a": {"__data__": {"id_": "860863cb-ba90-4287-9ff3-de812a7cf04a", "embedding": null, "metadata": {"page_label": "1", "file_name": "saved_pdf.pdf", "file_path": "E:\\llama-index RAG\\data\\saved_pdf.pdf", "file_type": "application/pdf", "file_size": 64903, "creation_date": "2024-04-14", "last_modified_date": "2024-04-17"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "ac226b84-1585-4759-add3-dc5d0af6ef65", "node_type": "4", "metadata": {"page_label": "1", "file_name": "saved_pdf.pdf", "file_path": "E:\\llama-index RAG\\data\\saved_pdf.pdf", "file_type": "application/pdf", "file_size": 64903, "creation_date": "2024-04-14", "last_modified_date": "2024-04-17"}, "hash": "2c629fa1f2e1e85f17b7d012739aea7cba30cdd55f935ed2225710942132eabf", "class_name": "RelatedNodeInfo"}}, "text": "3.DataProblem\nThisdocumentoutlinesthespecificinstructionsforpreparingtheprovideddatabaseofhumanvoice\nrecordingsfortrainingamachinelearningmodelcapableofdistinguishingbetweenauthenticand\nsyntheticvoices.\n1.DataExplorationandAnalysis:\n\uf0fc UtilizetoolssuchasMatplotlibandSeabornforin-depthdataanalysisandvisualization.\n\uf0fc Beginwithacomprehensiveexplorationofthedatabase,understandingcharacteristics,and\nassessingthedistributionofauthenticandsyntheticsamples.\n\uf0fc Identifyandaddressimbalancedsamplesinthedataset.\n2.ImbalanceHandling:\n\uf0fc Enhancemodelperformancebyemployingtechniquessuchasoversamplingorundersampling,\ne.g.,usingSMOTEorImblearn.\n3.DataCleaning:\n\uf0fc Addressvariationsinsamplewavlengthbyfindingthemeanoftotalsamplelengths.\n\uf0fc Utilizepaddingtechniquestostandardizeeachsampletothefixedmeanlength.\n\uf0fc Handlemisclassifiedsampleswithinthedataset.\n4.FeatureEngineering:\n\uf0fc ExtractrelevantacousticfeatureslikeMFCCs,spectrograms,andpitchfromaudiorecordings.\n\uf0fc Experimentwithdifferentfeaturesetstoidentifythemostdiscriminativeones.\n\uf0fc Normalizeandstandardizefeaturesforconsistentscaling,facilitatingmodeltraining.\n5.SpeakerEmbeddings:\n\uf0fc Considerincorporatingspeakerembeddingstocaptureindividualcharacteristics,enhancingthe\nmodel'sabilitytogeneralizeacrossdiversevoices.\n\uf0fc Implementsuitablemethodsforextractingspeakerembeddings,suchaspre-trainedmodelsor\ntrainingonthedataset.\n6.DataSplitting:\n\uf0fc Splitthedataintotraining,validation,andtestsets,ensuringastratifiedsplit.\n\uf0fc Evaluatemodelperformanceonthevalidationset,minimizinglossbeforefinaltestingonthe\ntestsamples.\n7.DataAugmentation:\n\uf0fc Applydataaugmentationtechniquestoincreasemodelrobustnessagainstvariationsin\nrecordingconditions.\n\uf0fc Techniquesmayincluderandompitchshifts,time-stretching,orintroducingbackgroundnoise.\n8.QualityControl:\n\uf0fc Conductarigorousqualitycontrolchecktoidentifyandaddressanomaliesoroutliersinthe\ndataset.\n\uf0fc Verifythatdatapreprocessingstepsdonotintroduceartifactsnegativelyaffectingmodel\nperformance.\nOncethedataispreparedfollowingtheseguidelines,thetransitionintothemodeldevelopment\nphasewillfocusonselectinganappropriatearchitecture,trainingthemodel,andfine-tuningitfor\noptimalperformance.", "start_char_idx": 0, "end_char_idx": 2150, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}}, "docstore/ref_doc_info": {"ac226b84-1585-4759-add3-dc5d0af6ef65": {"node_ids": ["860863cb-ba90-4287-9ff3-de812a7cf04a"], "metadata": {"page_label": "1", "file_name": "saved_pdf.pdf", "file_path": "E:\\llama-index RAG\\data\\saved_pdf.pdf", "file_type": "application/pdf", "file_size": 64903, "creation_date": "2024-04-14", "last_modified_date": "2024-04-17"}}}}
db/graph_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"graph_dict": {}}
db/image__vector_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"embedding_dict": {}, "text_id_to_ref_doc_id": {}, "metadata_dict": {}}
db/index_store.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"index_store/data": {"01282bcc-a355-4256-b245-78ace39871e9": {"__type__": "vector_store", "__data__": "{\"index_id\": \"01282bcc-a355-4256-b245-78ace39871e9\", \"summary\": null, \"nodes_dict\": {\"860863cb-ba90-4287-9ff3-de812a7cf04a\": \"860863cb-ba90-4287-9ff3-de812a7cf04a\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}
redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "service_account",
3
+ "project_id": "redfernstech-fd8fe",
4
+ "private_key_id": "0537b4efd68f2bf186da8a2d7ad46e116cf7128b",
5
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQC9xhepGY5asg7X\nWgOt3XO1lRhdLWBkycd14dlEv7kjXdcVvNJW/5hS2dbhm5YaOM09EdiquVh6U8Dw\nw7feVN6qCNZ3VMZCKvhWvWjOMSC02WXf993CsfrXf66SvEWVSe4sL6lls3sT1+dh\nyGdGoL+OghfuQrGYulgZbuV7roEF4iwahOQHpKnJMda+y89jAtwLuWOZUBClC8IU\nQOtQtmXS1IPEdn6gqZUPXDuPDCMlSgBWCN8QJa3VY2ZowfHm2EDASa0356ctEEyd\nrebyDwe5gAzlXDEX8FjjN3khLp65FYI8M8rz8R+cvOGaQJJwclzoXONhVWDgNqCs\niHF0N30FAgMBAAECggEAFGiBseHkMQpgqzXBxd2rVws7eAXBuIUJ6g+e2xRX13RS\nMEMX8bAsqY2bXLQWg9JjoUjSiVBDshVgtI5aWdK8XAJ1oev1eDcrxr7kJExx4nur\nR4Hd5iqtZFBrAy+zt0wgjL2Wv4T6MZZF3/pPv5ouOifxD+KPO8f1DSMjvasfXUpC\nQVrra0STVGDZJsvk5n3K+wMObrtNTjU2O+o0jKEU1adat9hFjHf6rniRBOQLPgcN\nJoeo8ru4MmFuTRBp1JsFIv0v8oRJwUiBilZFberWUs8EBvqiwW3PuCGC21CgNUE4\nkN/6ReXP5ZN4AteChCcTBBnAqyO2EDTvrSm82Vtk3wKBgQDx7mIvK41xD6GceIVI\noy1Gkzlzyqflwu7b89IaAYtoxMGI/FD9zz+6UFvUmZjEqGz/8Ie7/lEiWhxR7vzX\nkEAzx3rpXaNj2+l24H/wQpEwibw1o2rRxlEuWz2J1AoRuXsvFMjitNDyMhL/0Wxd\nW/bJ5cdBf5J9lNvP8U97L7TKOwKBgQDIzz6kJOzN/BU5WVyXdMV7SeuBAUI8tie1\nCxnrYI5SW4nk9mX/uop8RW5MZuqCrmXCEBpzuSKNL2NEKYSiDBOEQD/urrA6225G\n6OCOImcJ/ECd+FJmu4N7goNuQ2u/35rKmv8bTB7JU3bIvY5Naq4z5DJI3ReRbkw2\nLCR1A5khvwKBgC9cub/+SLxfkQXu2jj0KQLuA4tVmzTxyo0o2HLa5o3mJvVIYBqw\nHgu9e5zNTQkC6APa9Neq2/tbpLuti7YvuUHpxXg2Kqx7+uKY5LMGdSIJdN0TVvAm\nYPIwToXTCv2ZUDJRYVpwh49CmlGWkB5eyJuR7kY2UVlgcP/uf97f4gbNAoGAIyOA\nxqBff7v4ysxEU4xvch+BQlXCDXWihR+oLXP785VpD9O+DX3K9ewAXQY1SyDRVaAT\nwORIk4QTTr4lI2YRlDbZ+R5AYEw9g9MEWFrUxP6LIBlv8eImI9q2vPi3RiAOqh1t\nPo2XZYthYccpu4pLaXEpC28EzMIMO/6FcqRqi2kCgYEAu6Cq2r7LySPlDnl2VMbc\n33wDvnG/asNuQKGm4z7KWxdt27EexJ2uTFISozG46EO5wZv2NmJYEAh1tt7pS8AK\nL4IC6v+IkwSr56Dc4B4dH95EhZE7GIRAfM2ksAx5NOcb+pbqN+AjjxMla/CCRJyg\nHJxz3U0ys50mvDMYYLk54pY=\n-----END PRIVATE KEY-----\n",
6
+ "client_email": "firebase-adminsdk-g9vcn@redfernstech-fd8fe.iam.gserviceaccount.com",
7
+ "client_id": "115059528686363028957",
8
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
9
+ "token_uri": "https://oauth2.googleapis.com/token",
10
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
11
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/firebase-adminsdk-g9vcn%40redfernstech-fd8fe.iam.gserviceaccount.com",
12
+ "universe_domain": "googleapis.com"
13
+ }
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ python-dotenv
3
+ llama-index
4
+ llama-index-embeddings-huggingface
5
+ llama-index-llms-huggingface
6
+ firebase-admin