Spaces:
Runtime error
Runtime error
| // Copyright (c) Facebook, Inc. and its affiliates. | |
| // Note: this implementation originates from the Caffe2 ROIAlignRotated Op | |
| // and PyTorch ROIAlign (non-rotated) Op implementations. | |
| // The key difference between this implementation and those ones is | |
| // we don't do "legacy offset" in this version, as there aren't many previous | |
| // works, if any, using the "legacy" ROIAlignRotated Op. | |
| // This would make the interface a bit cleaner. | |
| namespace detectron2 { | |
| namespace { | |
| template <typename T> | |
| struct PreCalc { | |
| int pos1; | |
| int pos2; | |
| int pos3; | |
| int pos4; | |
| T w1; | |
| T w2; | |
| T w3; | |
| T w4; | |
| }; | |
| template <typename T> | |
| void pre_calc_for_bilinear_interpolate( | |
| const int height, | |
| const int width, | |
| const int pooled_height, | |
| const int pooled_width, | |
| const int iy_upper, | |
| const int ix_upper, | |
| T roi_start_h, | |
| T roi_start_w, | |
| T bin_size_h, | |
| T bin_size_w, | |
| int roi_bin_grid_h, | |
| int roi_bin_grid_w, | |
| T roi_center_h, | |
| T roi_center_w, | |
| T cos_theta, | |
| T sin_theta, | |
| std::vector<PreCalc<T>>& pre_calc) { | |
| int pre_calc_index = 0; | |
| for (int ph = 0; ph < pooled_height; ph++) { | |
| for (int pw = 0; pw < pooled_width; pw++) { | |
| for (int iy = 0; iy < iy_upper; iy++) { | |
| const T yy = roi_start_h + ph * bin_size_h + | |
| static_cast<T>(iy + .5f) * bin_size_h / | |
| static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
| for (int ix = 0; ix < ix_upper; ix++) { | |
| const T xx = roi_start_w + pw * bin_size_w + | |
| static_cast<T>(ix + .5f) * bin_size_w / | |
| static_cast<T>(roi_bin_grid_w); | |
| // Rotate by theta around the center and translate | |
| // In image space, (y, x) is the order for Right Handed System, | |
| // and this is essentially multiplying the point by a rotation matrix | |
| // to rotate it counterclockwise through angle theta. | |
| T y = yy * cos_theta - xx * sin_theta + roi_center_h; | |
| T x = yy * sin_theta + xx * cos_theta + roi_center_w; | |
| // deal with: inverse elements are out of feature map boundary | |
| if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
| // empty | |
| PreCalc<T> pc; | |
| pc.pos1 = 0; | |
| pc.pos2 = 0; | |
| pc.pos3 = 0; | |
| pc.pos4 = 0; | |
| pc.w1 = 0; | |
| pc.w2 = 0; | |
| pc.w3 = 0; | |
| pc.w4 = 0; | |
| pre_calc[pre_calc_index] = pc; | |
| pre_calc_index += 1; | |
| continue; | |
| } | |
| if (y < 0) { | |
| y = 0; | |
| } | |
| if (x < 0) { | |
| x = 0; | |
| } | |
| int y_low = (int)y; | |
| int x_low = (int)x; | |
| int y_high; | |
| int x_high; | |
| if (y_low >= height - 1) { | |
| y_high = y_low = height - 1; | |
| y = (T)y_low; | |
| } else { | |
| y_high = y_low + 1; | |
| } | |
| if (x_low >= width - 1) { | |
| x_high = x_low = width - 1; | |
| x = (T)x_low; | |
| } else { | |
| x_high = x_low + 1; | |
| } | |
| T ly = y - y_low; | |
| T lx = x - x_low; | |
| T hy = 1. - ly, hx = 1. - lx; | |
| T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
| // save weights and indices | |
| PreCalc<T> pc; | |
| pc.pos1 = y_low * width + x_low; | |
| pc.pos2 = y_low * width + x_high; | |
| pc.pos3 = y_high * width + x_low; | |
| pc.pos4 = y_high * width + x_high; | |
| pc.w1 = w1; | |
| pc.w2 = w2; | |
| pc.w3 = w3; | |
| pc.w4 = w4; | |
| pre_calc[pre_calc_index] = pc; | |
| pre_calc_index += 1; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| template <typename T> | |
| void bilinear_interpolate_gradient( | |
| const int height, | |
| const int width, | |
| T y, | |
| T x, | |
| T& w1, | |
| T& w2, | |
| T& w3, | |
| T& w4, | |
| int& x_low, | |
| int& x_high, | |
| int& y_low, | |
| int& y_high) { | |
| // deal with cases that inverse elements are out of feature map boundary | |
| if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
| // empty | |
| w1 = w2 = w3 = w4 = 0.; | |
| x_low = x_high = y_low = y_high = -1; | |
| return; | |
| } | |
| if (y < 0) { | |
| y = 0; | |
| } | |
| if (x < 0) { | |
| x = 0; | |
| } | |
| y_low = (int)y; | |
| x_low = (int)x; | |
| if (y_low >= height - 1) { | |
| y_high = y_low = height - 1; | |
| y = (T)y_low; | |
| } else { | |
| y_high = y_low + 1; | |
| } | |
| if (x_low >= width - 1) { | |
| x_high = x_low = width - 1; | |
| x = (T)x_low; | |
| } else { | |
| x_high = x_low + 1; | |
| } | |
| T ly = y - y_low; | |
| T lx = x - x_low; | |
| T hy = 1. - ly, hx = 1. - lx; | |
| // reference in forward | |
| // T v1 = input[y_low * width + x_low]; | |
| // T v2 = input[y_low * width + x_high]; | |
| // T v3 = input[y_high * width + x_low]; | |
| // T v4 = input[y_high * width + x_high]; | |
| // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
| w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
| return; | |
| } | |
| template <class T> | |
| inline void add(T* address, const T& val) { | |
| *address += val; | |
| } | |
| } // namespace | |
| template <typename T> | |
| void ROIAlignRotatedForward( | |
| const int nthreads, | |
| const T* input, | |
| const T& spatial_scale, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int pooled_height, | |
| const int pooled_width, | |
| const int sampling_ratio, | |
| const T* rois, | |
| T* output) { | |
| int n_rois = nthreads / channels / pooled_width / pooled_height; | |
| // (n, c, ph, pw) is an element in the pooled output | |
| // can be parallelized using omp | |
| // #pragma omp parallel for num_threads(32) | |
| for (int n = 0; n < n_rois; n++) { | |
| int index_n = n * channels * pooled_width * pooled_height; | |
| const T* current_roi = rois + n * 6; | |
| int roi_batch_ind = current_roi[0]; | |
| // Do not use rounding; this implementation detail is critical | |
| // ROIAlignRotated supports align == true, i.e., continuous coordinate | |
| // by default, thus the 0.5 offset | |
| T offset = (T)0.5; | |
| T roi_center_w = current_roi[1] * spatial_scale - offset; | |
| T roi_center_h = current_roi[2] * spatial_scale - offset; | |
| T roi_width = current_roi[3] * spatial_scale; | |
| T roi_height = current_roi[4] * spatial_scale; | |
| T theta = current_roi[5] * M_PI / 180.0; | |
| T cos_theta = cos(theta); | |
| T sin_theta = sin(theta); | |
| AT_ASSERTM( | |
| roi_width >= 0 && roi_height >= 0, | |
| "ROIs in ROIAlignRotated do not have non-negative size!"); | |
| T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
| T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
| // We use roi_bin_grid to sample the grid and mimic integral | |
| int roi_bin_grid_h = (sampling_ratio > 0) | |
| ? sampling_ratio | |
| : ceil(roi_height / pooled_height); // e.g., = 2 | |
| int roi_bin_grid_w = | |
| (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
| // We do average (integral) pooling inside a bin | |
| const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 | |
| // we want to precalculate indices and weights shared by all channels, | |
| // this is the key point of optimization | |
| std::vector<PreCalc<T>> pre_calc( | |
| roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height); | |
| // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). | |
| // Appropriate translation needs to be applied after. | |
| T roi_start_h = -roi_height / 2.0; | |
| T roi_start_w = -roi_width / 2.0; | |
| pre_calc_for_bilinear_interpolate( | |
| height, | |
| width, | |
| pooled_height, | |
| pooled_width, | |
| roi_bin_grid_h, | |
| roi_bin_grid_w, | |
| roi_start_h, | |
| roi_start_w, | |
| bin_size_h, | |
| bin_size_w, | |
| roi_bin_grid_h, | |
| roi_bin_grid_w, | |
| roi_center_h, | |
| roi_center_w, | |
| cos_theta, | |
| sin_theta, | |
| pre_calc); | |
| for (int c = 0; c < channels; c++) { | |
| int index_n_c = index_n + c * pooled_width * pooled_height; | |
| const T* offset_input = | |
| input + (roi_batch_ind * channels + c) * height * width; | |
| int pre_calc_index = 0; | |
| for (int ph = 0; ph < pooled_height; ph++) { | |
| for (int pw = 0; pw < pooled_width; pw++) { | |
| int index = index_n_c + ph * pooled_width + pw; | |
| T output_val = 0.; | |
| for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |
| for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
| PreCalc<T> pc = pre_calc[pre_calc_index]; | |
| output_val += pc.w1 * offset_input[pc.pos1] + | |
| pc.w2 * offset_input[pc.pos2] + | |
| pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4]; | |
| pre_calc_index += 1; | |
| } | |
| } | |
| output_val /= count; | |
| output[index] = output_val; | |
| } // for pw | |
| } // for ph | |
| } // for c | |
| } // for n | |
| } | |
| template <typename T> | |
| void ROIAlignRotatedBackward( | |
| const int nthreads, | |
| // may not be contiguous. should index using n_stride, etc | |
| const T* grad_output, | |
| const T& spatial_scale, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int pooled_height, | |
| const int pooled_width, | |
| const int sampling_ratio, | |
| T* grad_input, | |
| const T* rois, | |
| const int n_stride, | |
| const int c_stride, | |
| const int h_stride, | |
| const int w_stride) { | |
| for (int index = 0; index < nthreads; index++) { | |
| // (n, c, ph, pw) is an element in the pooled output | |
| int pw = index % pooled_width; | |
| int ph = (index / pooled_width) % pooled_height; | |
| int c = (index / pooled_width / pooled_height) % channels; | |
| int n = index / pooled_width / pooled_height / channels; | |
| const T* current_roi = rois + n * 6; | |
| int roi_batch_ind = current_roi[0]; | |
| // Do not use rounding; this implementation detail is critical | |
| // ROIAlignRotated supports align == true, i.e., continuous coordinate | |
| // by default, thus the 0.5 offset | |
| T offset = (T)0.5; | |
| T roi_center_w = current_roi[1] * spatial_scale - offset; | |
| T roi_center_h = current_roi[2] * spatial_scale - offset; | |
| T roi_width = current_roi[3] * spatial_scale; | |
| T roi_height = current_roi[4] * spatial_scale; | |
| T theta = current_roi[5] * M_PI / 180.0; | |
| T cos_theta = cos(theta); | |
| T sin_theta = sin(theta); | |
| AT_ASSERTM( | |
| roi_width >= 0 && roi_height >= 0, | |
| "ROIs in ROIAlignRotated do not have non-negative size!"); | |
| T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
| T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
| T* offset_grad_input = | |
| grad_input + ((roi_batch_ind * channels + c) * height * width); | |
| int output_offset = n * n_stride + c * c_stride; | |
| const T* offset_grad_output = grad_output + output_offset; | |
| const T grad_output_this_bin = | |
| offset_grad_output[ph * h_stride + pw * w_stride]; | |
| // We use roi_bin_grid to sample the grid and mimic integral | |
| int roi_bin_grid_h = (sampling_ratio > 0) | |
| ? sampling_ratio | |
| : ceil(roi_height / pooled_height); // e.g., = 2 | |
| int roi_bin_grid_w = | |
| (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
| // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). | |
| // Appropriate translation needs to be applied after. | |
| T roi_start_h = -roi_height / 2.0; | |
| T roi_start_w = -roi_width / 2.0; | |
| // We do average (integral) pooling inside a bin | |
| const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
| for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |
| const T yy = roi_start_h + ph * bin_size_h + | |
| static_cast<T>(iy + .5f) * bin_size_h / | |
| static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
| for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
| const T xx = roi_start_w + pw * bin_size_w + | |
| static_cast<T>(ix + .5f) * bin_size_w / | |
| static_cast<T>(roi_bin_grid_w); | |
| // Rotate by theta around the center and translate | |
| T y = yy * cos_theta - xx * sin_theta + roi_center_h; | |
| T x = yy * sin_theta + xx * cos_theta + roi_center_w; | |
| T w1, w2, w3, w4; | |
| int x_low, x_high, y_low, y_high; | |
| bilinear_interpolate_gradient( | |
| height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); | |
| T g1 = grad_output_this_bin * w1 / count; | |
| T g2 = grad_output_this_bin * w2 / count; | |
| T g3 = grad_output_this_bin * w3 / count; | |
| T g4 = grad_output_this_bin * w4 / count; | |
| if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { | |
| // atomic add is not needed for now since it is single threaded | |
| add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1)); | |
| add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2)); | |
| add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3)); | |
| add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4)); | |
| } // if | |
| } // ix | |
| } // iy | |
| } // for | |
| } // ROIAlignRotatedBackward | |
| at::Tensor ROIAlignRotated_forward_cpu( | |
| const at::Tensor& input, | |
| const at::Tensor& rois, | |
| const float spatial_scale, | |
| const int pooled_height, | |
| const int pooled_width, | |
| const int sampling_ratio) { | |
| AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor"); | |
| AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); | |
| at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; | |
| at::CheckedFrom c = "ROIAlign_forward_cpu"; | |
| at::checkAllSameType(c, {input_t, rois_t}); | |
| auto num_rois = rois.size(0); | |
| auto channels = input.size(1); | |
| auto height = input.size(2); | |
| auto width = input.size(3); | |
| at::Tensor output = at::zeros( | |
| {num_rois, channels, pooled_height, pooled_width}, input.options()); | |
| auto output_size = num_rois * pooled_height * pooled_width * channels; | |
| if (output.numel() == 0) { | |
| return output; | |
| } | |
| auto input_ = input.contiguous(), rois_ = rois.contiguous(); | |
| AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
| input.scalar_type(), "ROIAlignRotated_forward", [&] { | |
| ROIAlignRotatedForward<scalar_t>( | |
| output_size, | |
| input_.data_ptr<scalar_t>(), | |
| spatial_scale, | |
| channels, | |
| height, | |
| width, | |
| pooled_height, | |
| pooled_width, | |
| sampling_ratio, | |
| rois_.data_ptr<scalar_t>(), | |
| output.data_ptr<scalar_t>()); | |
| }); | |
| return output; | |
| } | |
| at::Tensor ROIAlignRotated_backward_cpu( | |
| const at::Tensor& grad, | |
| const at::Tensor& rois, | |
| const float spatial_scale, | |
| const int pooled_height, | |
| const int pooled_width, | |
| const int batch_size, | |
| const int channels, | |
| const int height, | |
| const int width, | |
| const int sampling_ratio) { | |
| AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor"); | |
| AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); | |
| at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; | |
| at::CheckedFrom c = "ROIAlignRotated_backward_cpu"; | |
| at::checkAllSameType(c, {grad_t, rois_t}); | |
| at::Tensor grad_input = | |
| at::zeros({batch_size, channels, height, width}, grad.options()); | |
| // handle possibly empty gradients | |
| if (grad.numel() == 0) { | |
| return grad_input; | |
| } | |
| // get stride values to ensure indexing into gradients is correct. | |
| int n_stride = grad.stride(0); | |
| int c_stride = grad.stride(1); | |
| int h_stride = grad.stride(2); | |
| int w_stride = grad.stride(3); | |
| auto rois_ = rois.contiguous(); | |
| AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
| grad.scalar_type(), "ROIAlignRotated_forward", [&] { | |
| ROIAlignRotatedBackward<scalar_t>( | |
| grad.numel(), | |
| grad.data_ptr<scalar_t>(), | |
| spatial_scale, | |
| channels, | |
| height, | |
| width, | |
| pooled_height, | |
| pooled_width, | |
| sampling_ratio, | |
| grad_input.data_ptr<scalar_t>(), | |
| rois_.data_ptr<scalar_t>(), | |
| n_stride, | |
| c_stride, | |
| h_stride, | |
| w_stride); | |
| }); | |
| return grad_input; | |
| } | |
| } // namespace detectron2 | |