Spaces:
Sleeping
Sleeping
| import os | |
| import gc | |
| import torch | |
| import transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig | |
| from datasets import load_dataset | |
| from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training | |
| from trl import DPOTrainer | |
| import bitsandbytes as bnb | |
| import wandb | |
| # Defined in the secrets tab in Google Colab | |
| # wb_token = "2eae619e4d6f0caef6408a6dc869dd0bfa6595f6" | |
| hf_token = os.getenv("hf_token") | |
| wb_token = os.getenv("wb_token") | |
| wandb.login(key=wb_token) | |
| # Fine-tune model with DPO | |
| import gradio as gr | |
| def greet(traindata_,output_repo): | |
| model_name = "HuggingFaceH4/zephyr-7b-gemma-v0.1" | |
| # new_model = "Gopal2002/zehpyr-gemma-dpo-finetune" | |
| new_model = output_repo | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "left" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| load_in_4bit=True | |
| ) | |
| model.config.use_cache = False | |
| # Reference model | |
| ref_model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| load_in_4bit=True | |
| ) | |
| # specify how to quantize the model | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| ) | |
| device_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None | |
| # Step 1: load the base model (Mistral-7B in our case) in 4-bit | |
| model_kwargs = dict( | |
| # attn_implementation="flash_attention_2", # set this to True if your GPU supports it (Flash Attention drastically speeds up model computations) | |
| torch_dtype="auto", | |
| use_cache=False, # set to False as we're going to use gradient checkpointing | |
| device_map=device_map, | |
| quantization_config=quantization_config, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, **model_kwargs) | |
| # Training arguments | |
| peft_config = LoraConfig( | |
| r=16, | |
| lora_alpha=16, | |
| lora_dropout=0.05, | |
| bias="none", | |
| task_type="CAUSAL_LM", | |
| target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] | |
| ) | |
| training_args = TrainingArguments( | |
| per_device_train_batch_size=4, | |
| gradient_accumulation_steps=4, | |
| gradient_checkpointing=True, | |
| learning_rate=5e-5, | |
| lr_scheduler_type="cosine", | |
| max_steps=200, | |
| save_strategy="no", | |
| logging_steps=1, | |
| output_dir=new_model, | |
| optim="paged_adamw_32bit", | |
| warmup_steps=100, | |
| bf16=True, | |
| report_to="wandb", | |
| ) | |
| #load the dataset | |
| dataset = load_dataset(traindata_, split='train') | |
| # dataset = load_dataset('Gopal2002/zephyr-gemma-finetune-dpo', split='train') | |
| # Create DPO trainer | |
| dpo_trainer = DPOTrainer( | |
| model, | |
| ref_model=None, | |
| args=training_args, | |
| train_dataset=dataset, | |
| tokenizer=tokenizer, | |
| peft_config=peft_config, | |
| beta=0.1, | |
| max_prompt_length=2048, | |
| max_length=1536, | |
| ) | |
| dpo_trainer.train() | |
| return "Training Done" | |
| except Exception as e: | |
| return str(e) | |
| with gr.Blocks() as demo: | |
| traindata_ = gr.Textbox(label="Enter training data repo") | |
| output_repo = gr.Textbox(label="Enter output model path") | |
| output = gr.Textbox(label="Output Box") | |
| greet_btn = gr.Button("TRAIN") | |
| greet_btn.click(fn=greet, inputs=[traindata_,output_repo], outputs=output, api_name="greet") | |
| demo.launch() |