Medical_RLHF / utils.py
Goodnight7's picture
Update utils.py
e6d300b verified
raw
history blame
3.93 kB
# utils
from langchain_chroma import Chroma
from langchain_nomic.embeddings import NomicEmbeddings
from langchain_core.documents import Document
from langchain.retrievers.document_compressors import CohereRerank
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnableMap
from langchain.schema import BaseRetriever
from qdrant_client import models
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
load_dotenv()
#Retriever
def retriever(n_docs=5):
vector_database_path = "chromadb3"
#embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectorstore = Chroma(collection_name="chroma_db",
persist_directory=vector_database_path,
embedding_function=embedding_model)
vs_retriever = vectorstore.as_retriever(k=n_docs)
texts = vectorstore.get()['documents']
metadatas = vectorstore.get()["metadatas"]
documents = []
for i in range(len(texts)):
doc = Document(page_content=texts[i], metadata=metadatas[i])
documents.append(doc)
keyword_retriever = BM25Retriever.from_documents(documents)
keyword_retriever.k = n_docs
ensemble_retriever = EnsembleRetriever(retrievers=[vs_retriever,keyword_retriever],
weights=[0.5, 0.5])
compressor = CohereRerank(model="rerank-english-v3.0")
retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=ensemble_retriever
)
return retriever
#Retriever prompt
rag_prompt = """You are a medical chatbot designed to answer health-related questions.
The questions you will receive will primarily focus on medical topics and patient care.
Here is the context to use to answer the question:
{context}
Think carefully about the above context.
Now, review the user question:
{input}
Provide an answer to this question using only the above context.
Answer:"""
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
#RAG chain
def get_expression_chain(retriever: BaseRetriever, model_name="llama-3.1-70b-versatile", temp=0 ) -> Runnable:
"""Return a chain defined primarily in LangChain Expression Language"""
def retrieve_context(input_text):
# Use the retriever to fetch relevant documents
docs = retriever.get_relevant_documents(input_text)
return format_docs(docs)
ingress = RunnableMap(
{
"input": lambda x: x["input"],
"context": lambda x: retrieve_context(x["input"]),
}
)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
rag_prompt
)
]
)
llm = ChatGroq(model=model_name, temperature=temp)
chain = ingress | prompt | llm
return chain
#embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
#Generate embeddings for a given text
def get_embeddings(text):
return embedding_model.embed_query([text])[0] #, task_type='search_document'
# Create or connect to a Qdrant collection
def create_qdrant_collection(client, collection_name):
if collection_name not in client.get_collections().collections:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE)
)