Spaces:
Sleeping
Sleeping
| # Author: Bingxin Ke | |
| # Last modified: 2024-02-08 | |
| import torch | |
| def get_depth_normalizer(cfg_normalizer): | |
| if cfg_normalizer is None: | |
| def identical(x): | |
| return x | |
| depth_transform = identical | |
| elif "near_far_metric" == cfg_normalizer.type: | |
| depth_transform = NearFarMetricNormalizer( | |
| norm_min=cfg_normalizer.norm_min, | |
| norm_max=cfg_normalizer.norm_max, | |
| min_max_quantile=cfg_normalizer.min_max_quantile, | |
| clip=cfg_normalizer.clip, | |
| ) | |
| else: | |
| raise NotImplementedError | |
| return depth_transform | |
| class DepthNormalizerBase: | |
| is_relative = None | |
| far_plane_at_max = None | |
| def __init__( | |
| self, | |
| norm_min=-1.0, | |
| norm_max=1.0, | |
| ) -> None: | |
| self.norm_min = norm_min | |
| self.norm_max = norm_max | |
| raise NotImplementedError | |
| def __call__(self, depth, valid_mask=None, clip=None): | |
| raise NotImplementedError | |
| def denormalize(self, depth_norm, **kwargs): | |
| # For metric depth: convert prediction back to metric depth | |
| # For relative depth: convert prediction to [0, 1] | |
| raise NotImplementedError | |
| class NearFarMetricNormalizer(DepthNormalizerBase): | |
| """ | |
| depth in [0, d_max] -> [-1, 1] | |
| """ | |
| is_relative = True | |
| far_plane_at_max = True | |
| def __init__( | |
| self, norm_min=-1.0, norm_max=1.0, min_max_quantile=0.02, clip=True | |
| ) -> None: | |
| self.norm_min = norm_min | |
| self.norm_max = norm_max | |
| self.norm_range = self.norm_max - self.norm_min | |
| self.min_quantile = min_max_quantile | |
| self.max_quantile = 1.0 - self.min_quantile | |
| self.clip = clip | |
| def __call__(self, depth_linear, valid_mask=None, clip=None): | |
| clip = clip if clip is not None else self.clip | |
| if valid_mask is None: | |
| valid_mask = torch.ones_like(depth_linear).bool() | |
| valid_mask = valid_mask & (depth_linear > 0) | |
| # Take quantiles as min and max | |
| _min, _max = torch.quantile( | |
| depth_linear[valid_mask], | |
| torch.tensor([self.min_quantile, self.max_quantile]), | |
| ) | |
| # scale and shift | |
| depth_norm_linear = (depth_linear - _min) / ( | |
| _max - _min | |
| ) * self.norm_range + self.norm_min | |
| if clip: | |
| depth_norm_linear = torch.clip( | |
| depth_norm_linear, self.norm_min, self.norm_max | |
| ) | |
| return depth_norm_linear | |
| def scale_back(self, depth_norm): | |
| # scale to [0, 1] | |
| depth_linear = (depth_norm - self.norm_min) / self.norm_range | |
| return depth_linear | |
| def denormalize(self, depth_norm, **kwargs): | |
| return self.scale_back(depth_norm=depth_norm) | |