Spaces:
Running
Running
import numpy as np | |
import streamlit as st | |
from openai import OpenAI | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Initialize the OpenAI client | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token | |
) | |
# Create supported model | |
model_links = { | |
"Zephyr-7B": "HuggingFaceH4/zephyr-7b-beta" | |
} | |
# Pull info about the model to display | |
model_info = { | |
"Zephyr-7B-β": { | |
'description': """The **Zephyr 7B β** is a next-gen **GPT-like Large Language Model (LLM)** fine-tuned from Mistral-7B-v0.1, containing 7 billion parameters. This model is optimized for educational tasks and excels at science-related Q&A with high accuracy and performance.\n""" | |
} | |
} | |
# Reset the conversation | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
return None | |
# App title and description | |
st.title("Sci-Mom 👩🏫 ") | |
st.subheader("AI chatbot for Solving your doubts 📚 :)") | |
# Custom description for SciMom in the sidebar | |
st.sidebar.write("Built for my mom, with love ❤️.") | |
st.sidebar.markdown(model_info["Zephyr-7B-β"]['description']) | |
st.sidebar.markdown(""" | |
### Zephyr 7B β 🤖 | |
Your personal science assistant, built with **7 billion parameters** to help with all your science Q&As. | |
- **Trained using Ultrachat Feedbacks**! | |
- **Quick & Smart**: Handles easy to tough topics like a pro. | |
- **Accurate**: Reliable answers every time. | |
Need help with science? Zephyr’s got your back! 🔬📘 | |
""") | |
st.sidebar.markdown("By Gokulnath ♔") | |
# If model selection was needed (now removed) | |
selected_model = "Zephyr-7B" # Only one model remains | |
if "prev_option" not in st.session_state: | |
st.session_state.prev_option = selected_model | |
if st.session_state.prev_option != selected_model: | |
st.session_state.messages = [] | |
st.session_state.prev_option = selected_model | |
reset_conversation() | |
# Pull in the model we want to use | |
repo_id = model_links[selected_model] | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("Ask Scimom!"): | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
try: | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=0.5, # Default temperature setting | |
stream=True, | |
max_tokens=3000, | |
) | |
response = st.write_stream(stream) | |
except Exception as e: | |
response = "😵💫 Something went wrong. Please try again later." | |
st.write(response) | |
st.write("This was the error message:") | |
st.write(e) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |