Spaces:
Build error
Build error
""" | |
Mask R-CNN | |
The main Mask R-CNN model implemenetation. | |
Copyright (c) 2017 Matterport, Inc. | |
Licensed under the MIT License (see LICENSE for details) | |
Written by Waleed Abdulla | |
""" | |
import os | |
import random | |
import datetime | |
import re | |
import math | |
import logging | |
from collections import OrderedDict | |
import multiprocessing | |
import numpy as np | |
import skimage.transform | |
import tensorflow as tf | |
import keras | |
import keras.backend as K | |
import keras.layers as KL | |
import keras.engine.topology as KE | |
import keras.models as KM | |
from mrcnn import utils | |
# Requires TensorFlow 1.3+ and Keras 2.0.8+. | |
from distutils.version import LooseVersion | |
assert LooseVersion(tf.__version__) >= LooseVersion("1.3") | |
assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') | |
############################################################ | |
# Utility Functions | |
############################################################ | |
def log(text, array=None): | |
"""Prints a text message. And, optionally, if a Numpy array is provided it | |
prints it's shape, min, and max values. | |
""" | |
if array is not None: | |
text = text.ljust(25) | |
text += ("shape: {:20} min: {:10.5f} max: {:10.5f} {}".format( | |
str(array.shape), | |
array.min() if array.size else "", | |
array.max() if array.size else "", | |
array.dtype)) | |
print(text) | |
class BatchNorm(KL.BatchNormalization): | |
"""Extends the Keras BatchNormalization class to allow a central place | |
to make changes if needed. | |
Batch normalization has a negative effect on training if batches are small | |
so this layer is often frozen (via setting in Config class) and functions | |
as linear layer. | |
""" | |
def call(self, inputs, training=None): | |
""" | |
Note about training values: | |
None: Train BN layers. This is the normal mode | |
False: Freeze BN layers. Good when batch size is small | |
True: (don't use). Set layer in training mode even when inferencing | |
""" | |
return super(self.__class__, self).call(inputs, training=training) | |
def compute_backbone_shapes(config, image_shape): | |
"""Computes the width and height of each stage of the backbone network. | |
Returns: | |
[N, (height, width)]. Where N is the number of stages | |
""" | |
# Currently supports ResNet only | |
assert config.BACKBONE in ["resnet50", "resnet101"] | |
return np.array( | |
[[int(math.ceil(image_shape[0] / stride)), | |
int(math.ceil(image_shape[1] / stride))] | |
for stride in config.BACKBONE_STRIDES]) | |
############################################################ | |
# Resnet Graph | |
############################################################ | |
# Code adopted from: | |
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py | |
def identity_block(input_tensor, kernel_size, filters, stage, block, | |
use_bias=True, train_bn=True): | |
"""The identity_block is the block that has no conv layer at shortcut | |
# Arguments | |
input_tensor: input tensor | |
kernel_size: defualt 3, the kernel size of middle conv layer at main path | |
filters: list of integers, the nb_filters of 3 conv layer at main path | |
stage: integer, current stage label, used for generating layer names | |
block: 'a','b'..., current block label, used for generating layer names | |
use_bias: Boolean. To use or not use a bias in conv layers. | |
train_bn: Boolean. Train or freeze Batch Norm layres | |
""" | |
nb_filter1, nb_filter2, nb_filter3 = filters | |
conv_name_base = 'res' + str(stage) + block + '_branch' | |
bn_name_base = 'bn' + str(stage) + block + '_branch' | |
x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', | |
use_bias=use_bias)(input_tensor) | |
x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', | |
name=conv_name_base + '2b', use_bias=use_bias)(x) | |
x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', | |
use_bias=use_bias)(x) | |
x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) | |
x = KL.Add()([x, input_tensor]) | |
x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) | |
return x | |
def conv_block(input_tensor, kernel_size, filters, stage, block, | |
strides=(2, 2), use_bias=True, train_bn=True): | |
"""conv_block is the block that has a conv layer at shortcut | |
# Arguments | |
input_tensor: input tensor | |
kernel_size: defualt 3, the kernel size of middle conv layer at main path | |
filters: list of integers, the nb_filters of 3 conv layer at main path | |
stage: integer, current stage label, used for generating layer names | |
block: 'a','b'..., current block label, used for generating layer names | |
use_bias: Boolean. To use or not use a bias in conv layers. | |
train_bn: Boolean. Train or freeze Batch Norm layres | |
Note that from stage 3, the first conv layer at main path is with subsample=(2,2) | |
And the shortcut should have subsample=(2,2) as well | |
""" | |
nb_filter1, nb_filter2, nb_filter3 = filters | |
conv_name_base = 'res' + str(stage) + block + '_branch' | |
bn_name_base = 'bn' + str(stage) + block + '_branch' | |
x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, | |
name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) | |
x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', | |
name=conv_name_base + '2b', use_bias=use_bias)(x) | |
x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + | |
'2c', use_bias=use_bias)(x) | |
x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) | |
shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, | |
name=conv_name_base + '1', use_bias=use_bias)(input_tensor) | |
shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn) | |
x = KL.Add()([x, shortcut]) | |
x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) | |
return x | |
def resnet_graph(input_image, architecture, stage5=False, train_bn=True): | |
"""Build a ResNet graph. | |
architecture: Can be resnet50 or resnet101 | |
stage5: Boolean. If False, stage5 of the network is not created | |
train_bn: Boolean. Train or freeze Batch Norm layres | |
""" | |
assert architecture in ["resnet50", "resnet101"] | |
# Stage 1 | |
x = KL.ZeroPadding2D((3, 3))(input_image) | |
x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) | |
x = BatchNorm(name='bn_conv1')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) | |
# Stage 2 | |
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn) | |
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn) | |
C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn) | |
# Stage 3 | |
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn) | |
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn) | |
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn) | |
C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn) | |
# Stage 4 | |
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn) | |
block_count = {"resnet50": 5, "resnet101": 22}[architecture] | |
for i in range(block_count): | |
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn) | |
C4 = x | |
# Stage 5 | |
if stage5: | |
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn) | |
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn) | |
C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn) | |
else: | |
C5 = None | |
return [C1, C2, C3, C4, C5] | |
############################################################ | |
# Proposal Layer | |
############################################################ | |
def apply_box_deltas_graph(boxes, deltas): | |
"""Applies the given deltas to the given boxes. | |
boxes: [N, (y1, x1, y2, x2)] boxes to update | |
deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply | |
""" | |
# Convert to y, x, h, w | |
height = boxes[:, 2] - boxes[:, 0] | |
width = boxes[:, 3] - boxes[:, 1] | |
center_y = boxes[:, 0] + 0.5 * height | |
center_x = boxes[:, 1] + 0.5 * width | |
# Apply deltas | |
center_y += deltas[:, 0] * height | |
center_x += deltas[:, 1] * width | |
height *= tf.exp(deltas[:, 2]) | |
width *= tf.exp(deltas[:, 3]) | |
# Convert back to y1, x1, y2, x2 | |
y1 = center_y - 0.5 * height | |
x1 = center_x - 0.5 * width | |
y2 = y1 + height | |
x2 = x1 + width | |
result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") | |
return result | |
def clip_boxes_graph(boxes, window): | |
""" | |
boxes: [N, (y1, x1, y2, x2)] | |
window: [4] in the form y1, x1, y2, x2 | |
""" | |
# Split | |
wy1, wx1, wy2, wx2 = tf.split(window, 4) | |
y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) | |
# Clip | |
y1 = tf.maximum(tf.minimum(y1, wy2), wy1) | |
x1 = tf.maximum(tf.minimum(x1, wx2), wx1) | |
y2 = tf.maximum(tf.minimum(y2, wy2), wy1) | |
x2 = tf.maximum(tf.minimum(x2, wx2), wx1) | |
clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") | |
clipped.set_shape((clipped.shape[0], 4)) | |
return clipped | |
class ProposalLayer(KE.Layer): | |
"""Receives anchor scores and selects a subset to pass as proposals | |
to the second stage. Filtering is done based on anchor scores and | |
non-max suppression to remove overlaps. It also applies bounding | |
box refinement deltas to anchors. | |
Inputs: | |
rpn_probs: [batch, anchors, (bg prob, fg prob)] | |
rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] | |
anchors: [batch, (y1, x1, y2, x2)] anchors in normalized coordinates | |
Returns: | |
Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] | |
""" | |
def __init__(self, proposal_count, nms_threshold, config=None, **kwargs): | |
super(ProposalLayer, self).__init__(**kwargs) | |
self.config = config | |
self.proposal_count = proposal_count | |
self.nms_threshold = nms_threshold | |
def call(self, inputs): | |
# Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] | |
scores = inputs[0][:, :, 1] | |
# Box deltas [batch, num_rois, 4] | |
deltas = inputs[1] | |
deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) | |
# Anchors | |
anchors = inputs[2] | |
# Improve performance by trimming to top anchors by score | |
# and doing the rest on the smaller subset. | |
pre_nms_limit = tf.minimum(6000, tf.shape(anchors)[1]) | |
ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, | |
name="top_anchors").indices | |
scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), | |
self.config.IMAGES_PER_GPU) | |
deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), | |
self.config.IMAGES_PER_GPU) | |
pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x), | |
self.config.IMAGES_PER_GPU, | |
names=["pre_nms_anchors"]) | |
# Apply deltas to anchors to get refined anchors. | |
# [batch, N, (y1, x1, y2, x2)] | |
boxes = utils.batch_slice([pre_nms_anchors, deltas], | |
lambda x, y: apply_box_deltas_graph(x, y), | |
self.config.IMAGES_PER_GPU, | |
names=["refined_anchors"]) | |
# Clip to image boundaries. Since we're in normalized coordinates, | |
# clip to 0..1 range. [batch, N, (y1, x1, y2, x2)] | |
window = np.array([0, 0, 1, 1], dtype=np.float32) | |
boxes = utils.batch_slice(boxes, | |
lambda x: clip_boxes_graph(x, window), | |
self.config.IMAGES_PER_GPU, | |
names=["refined_anchors_clipped"]) | |
# Filter out small boxes | |
# According to Xinlei Chen's paper, this reduces detection accuracy | |
# for small objects, so we're skipping it. | |
# Non-max suppression | |
def nms(boxes, scores): | |
indices = tf.image.non_max_suppression( | |
boxes, scores, self.proposal_count, | |
self.nms_threshold, name="rpn_non_max_suppression") | |
proposals = tf.gather(boxes, indices) | |
# Pad if needed | |
padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) | |
proposals = tf.pad(proposals, [(0, padding), (0, 0)]) | |
return proposals | |
proposals = utils.batch_slice([boxes, scores], nms, | |
self.config.IMAGES_PER_GPU) | |
return proposals | |
def compute_output_shape(self, input_shape): | |
return (None, self.proposal_count, 4) | |
############################################################ | |
# ROIAlign Layer | |
############################################################ | |
def log2_graph(x): | |
"""Implementatin of Log2. TF doesn't have a native implemenation.""" | |
return tf.log(x) / tf.log(2.0) | |
class PyramidROIAlign(KE.Layer): | |
"""Implements ROI Pooling on multiple levels of the feature pyramid. | |
Params: | |
- pool_shape: [height, width] of the output pooled regions. Usually [7, 7] | |
Inputs: | |
- boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized | |
coordinates. Possibly padded with zeros if not enough | |
boxes to fill the array. | |
- image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
- Feature maps: List of feature maps from different levels of the pyramid. | |
Each is [batch, height, width, channels] | |
Output: | |
Pooled regions in the shape: [batch, num_boxes, height, width, channels]. | |
The width and height are those specific in the pool_shape in the layer | |
constructor. | |
""" | |
def __init__(self, pool_shape, **kwargs): | |
super(PyramidROIAlign, self).__init__(**kwargs) | |
self.pool_shape = tuple(pool_shape) | |
def call(self, inputs): | |
# Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords | |
boxes = inputs[0] | |
# Image meta | |
# Holds details about the image. See compose_image_meta() | |
image_meta = inputs[1] | |
# Feature Maps. List of feature maps from different level of the | |
# feature pyramid. Each is [batch, height, width, channels] | |
feature_maps = inputs[2:] | |
# Assign each ROI to a level in the pyramid based on the ROI area. | |
y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) | |
h = y2 - y1 | |
w = x2 - x1 | |
# Use shape of first image. Images in a batch must have the same size. | |
image_shape = parse_image_meta_graph(image_meta)['image_shape'][0] | |
# Equation 1 in the Feature Pyramid Networks paper. Account for | |
# the fact that our coordinates are normalized here. | |
# e.g. a 224x224 ROI (in pixels) maps to P4 | |
image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32) | |
roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) | |
roi_level = tf.minimum(5, tf.maximum( | |
2, 4 + tf.cast(tf.round(roi_level), tf.int32))) | |
roi_level = tf.squeeze(roi_level, 2) | |
# Loop through levels and apply ROI pooling to each. P2 to P5. | |
pooled = [] | |
box_to_level = [] | |
for i, level in enumerate(range(2, 6)): | |
ix = tf.where(tf.equal(roi_level, level)) | |
level_boxes = tf.gather_nd(boxes, ix) | |
# Box indicies for crop_and_resize. | |
box_indices = tf.cast(ix[:, 0], tf.int32) | |
# Keep track of which box is mapped to which level | |
box_to_level.append(ix) | |
# Stop gradient propogation to ROI proposals | |
level_boxes = tf.stop_gradient(level_boxes) | |
box_indices = tf.stop_gradient(box_indices) | |
# Crop and Resize | |
# From Mask R-CNN paper: "We sample four regular locations, so | |
# that we can evaluate either max or average pooling. In fact, | |
# interpolating only a single value at each bin center (without | |
# pooling) is nearly as effective." | |
# | |
# Here we use the simplified approach of a single value per bin, | |
# which is how it's done in tf.crop_and_resize() | |
# Result: [batch * num_boxes, pool_height, pool_width, channels] | |
pooled.append(tf.image.crop_and_resize( | |
feature_maps[i], level_boxes, box_indices, self.pool_shape, | |
method="bilinear")) | |
# Pack pooled features into one tensor | |
pooled = tf.concat(pooled, axis=0) | |
# Pack box_to_level mapping into one array and add another | |
# column representing the order of pooled boxes | |
box_to_level = tf.concat(box_to_level, axis=0) | |
box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) | |
box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], | |
axis=1) | |
# Rearrange pooled features to match the order of the original boxes | |
# Sort box_to_level by batch then box index | |
# TF doesn't have a way to sort by two columns, so merge them and sort. | |
sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] | |
ix = tf.nn.top_k(sorting_tensor, k=tf.shape( | |
box_to_level)[0]).indices[::-1] | |
ix = tf.gather(box_to_level[:, 2], ix) | |
pooled = tf.gather(pooled, ix) | |
# Re-add the batch dimension | |
pooled = tf.expand_dims(pooled, 0) | |
return pooled | |
def compute_output_shape(self, input_shape): | |
return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], ) | |
############################################################ | |
# Detection Target Layer | |
############################################################ | |
def overlaps_graph(boxes1, boxes2): | |
"""Computes IoU overlaps between two sets of boxes. | |
boxes1, boxes2: [N, (y1, x1, y2, x2)]. | |
""" | |
# 1. Tile boxes2 and repeate boxes1. This allows us to compare | |
# every boxes1 against every boxes2 without loops. | |
# TF doesn't have an equivalent to np.repeate() so simulate it | |
# using tf.tile() and tf.reshape. | |
b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), | |
[1, 1, tf.shape(boxes2)[0]]), [-1, 4]) | |
b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) | |
# 2. Compute intersections | |
b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) | |
b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) | |
y1 = tf.maximum(b1_y1, b2_y1) | |
x1 = tf.maximum(b1_x1, b2_x1) | |
y2 = tf.minimum(b1_y2, b2_y2) | |
x2 = tf.minimum(b1_x2, b2_x2) | |
intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) | |
# 3. Compute unions | |
b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) | |
b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) | |
union = b1_area + b2_area - intersection | |
# 4. Compute IoU and reshape to [boxes1, boxes2] | |
iou = intersection / union | |
overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) | |
return overlaps | |
def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): | |
"""Generates detection targets for one image. Subsamples proposals and | |
generates target class IDs, bounding box deltas, and masks for each. | |
Inputs: | |
proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might | |
be zero padded if there are not enough proposals. | |
gt_class_ids: [MAX_GT_INSTANCES] int class IDs | |
gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. | |
gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. | |
Returns: Target ROIs and corresponding class IDs, bounding box shifts, | |
and masks. | |
rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates | |
class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. | |
deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))] | |
Class-specific bbox refinements. | |
masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox | |
boundaries and resized to neural network output size. | |
Note: Returned arrays might be zero padded if not enough target ROIs. | |
""" | |
# Assertions | |
asserts = [ | |
tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], | |
name="roi_assertion"), | |
] | |
with tf.control_dependencies(asserts): | |
proposals = tf.identity(proposals) | |
# Remove zero padding | |
proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") | |
gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") | |
gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, | |
name="trim_gt_class_ids") | |
gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2, | |
name="trim_gt_masks") | |
# Handle COCO crowds | |
# A crowd box in COCO is a bounding box around several instances. Exclude | |
# them from training. A crowd box is given a negative class ID. | |
crowd_ix = tf.where(gt_class_ids < 0)[:, 0] | |
non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] | |
crowd_boxes = tf.gather(gt_boxes, crowd_ix) | |
crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2) | |
gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) | |
gt_boxes = tf.gather(gt_boxes, non_crowd_ix) | |
gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) | |
# Compute overlaps matrix [proposals, gt_boxes] | |
overlaps = overlaps_graph(proposals, gt_boxes) | |
# Compute overlaps with crowd boxes [anchors, crowds] | |
crowd_overlaps = overlaps_graph(proposals, crowd_boxes) | |
crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) | |
no_crowd_bool = (crowd_iou_max < 0.001) | |
# Determine postive and negative ROIs | |
roi_iou_max = tf.reduce_max(overlaps, axis=1) | |
# 1. Positive ROIs are those with >= 0.5 IoU with a GT box | |
positive_roi_bool = (roi_iou_max >= 0.5) | |
positive_indices = tf.where(positive_roi_bool)[:, 0] | |
# 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. | |
negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] | |
# Subsample ROIs. Aim for 33% positive | |
# Positive ROIs | |
positive_count = int(config.TRAIN_ROIS_PER_IMAGE * | |
config.ROI_POSITIVE_RATIO) | |
positive_indices = tf.random_shuffle(positive_indices)[:positive_count] | |
positive_count = tf.shape(positive_indices)[0] | |
# Negative ROIs. Add enough to maintain positive:negative ratio. | |
r = 1.0 / config.ROI_POSITIVE_RATIO | |
negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count | |
negative_indices = tf.random_shuffle(negative_indices)[:negative_count] | |
# Gather selected ROIs | |
positive_rois = tf.gather(proposals, positive_indices) | |
negative_rois = tf.gather(proposals, negative_indices) | |
# Assign positive ROIs to GT boxes. | |
positive_overlaps = tf.gather(overlaps, positive_indices) | |
roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1) | |
roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) | |
roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) | |
# Compute bbox refinement for positive ROIs | |
deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) | |
deltas /= config.BBOX_STD_DEV | |
# Assign positive ROIs to GT masks | |
# Permute masks to [N, height, width, 1] | |
transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) | |
# Pick the right mask for each ROI | |
roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) | |
# Compute mask targets | |
boxes = positive_rois | |
if config.USE_MINI_MASK: | |
# Transform ROI corrdinates from normalized image space | |
# to normalized mini-mask space. | |
y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) | |
gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) | |
gt_h = gt_y2 - gt_y1 | |
gt_w = gt_x2 - gt_x1 | |
y1 = (y1 - gt_y1) / gt_h | |
x1 = (x1 - gt_x1) / gt_w | |
y2 = (y2 - gt_y1) / gt_h | |
x2 = (x2 - gt_x1) / gt_w | |
boxes = tf.concat([y1, x1, y2, x2], 1) | |
box_ids = tf.range(0, tf.shape(roi_masks)[0]) | |
masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes, | |
box_ids, | |
config.MASK_SHAPE) | |
# Remove the extra dimension from masks. | |
masks = tf.squeeze(masks, axis=3) | |
# Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with | |
# binary cross entropy loss. | |
masks = tf.round(masks) | |
# Append negative ROIs and pad bbox deltas and masks that | |
# are not used for negative ROIs with zeros. | |
rois = tf.concat([positive_rois, negative_rois], axis=0) | |
N = tf.shape(negative_rois)[0] | |
P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) | |
rois = tf.pad(rois, [(0, P), (0, 0)]) | |
roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) | |
roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) | |
deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) | |
masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) | |
return rois, roi_gt_class_ids, deltas, masks | |
class DetectionTargetLayer(KE.Layer): | |
"""Subsamples proposals and generates target box refinement, class_ids, | |
and masks for each. | |
Inputs: | |
proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might | |
be zero padded if there are not enough proposals. | |
gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. | |
gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized | |
coordinates. | |
gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type | |
Returns: Target ROIs and corresponding class IDs, bounding box shifts, | |
and masks. | |
rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized | |
coordinates | |
target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. | |
target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, | |
(dy, dx, log(dh), log(dw), class_id)] | |
Class-specific bbox refinements. | |
target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width) | |
Masks cropped to bbox boundaries and resized to neural | |
network output size. | |
Note: Returned arrays might be zero padded if not enough target ROIs. | |
""" | |
def __init__(self, config, **kwargs): | |
super(DetectionTargetLayer, self).__init__(**kwargs) | |
self.config = config | |
def call(self, inputs): | |
proposals = inputs[0] | |
gt_class_ids = inputs[1] | |
gt_boxes = inputs[2] | |
gt_masks = inputs[3] | |
# Slice the batch and run a graph for each slice | |
# TODO: Rename target_bbox to target_deltas for clarity | |
names = ["rois", "target_class_ids", "target_bbox", "target_mask"] | |
outputs = utils.batch_slice( | |
[proposals, gt_class_ids, gt_boxes, gt_masks], | |
lambda w, x, y, z: detection_targets_graph( | |
w, x, y, z, self.config), | |
self.config.IMAGES_PER_GPU, names=names) | |
return outputs | |
def compute_output_shape(self, input_shape): | |
return [ | |
(None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois | |
(None, 1), # class_ids | |
(None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas | |
(None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0], | |
self.config.MASK_SHAPE[1]) # masks | |
] | |
def compute_mask(self, inputs, mask=None): | |
return [None, None, None, None] | |
############################################################ | |
# Detection Layer | |
############################################################ | |
def refine_detections_graph(rois, probs, deltas, window, config): | |
"""Refine classified proposals and filter overlaps and return final | |
detections. | |
Inputs: | |
rois: [N, (y1, x1, y2, x2)] in normalized coordinates | |
probs: [N, num_classes]. Class probabilities. | |
deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific | |
bounding box deltas. | |
window: (y1, x1, y2, x2) in image coordinates. The part of the image | |
that contains the image excluding the padding. | |
Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)] where | |
coordinates are normalized. | |
""" | |
# Class IDs per ROI | |
class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) | |
# Class probability of the top class of each ROI | |
indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) | |
class_scores = tf.gather_nd(probs, indices) | |
# Class-specific bounding box deltas | |
deltas_specific = tf.gather_nd(deltas, indices) | |
# Apply bounding box deltas | |
# Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates | |
refined_rois = apply_box_deltas_graph( | |
rois, deltas_specific * config.BBOX_STD_DEV) | |
# Clip boxes to image window | |
refined_rois = clip_boxes_graph(refined_rois, window) | |
# TODO: Filter out boxes with zero area | |
# Filter out background boxes | |
keep = tf.where(class_ids > 0)[:, 0] | |
# Filter out low confidence boxes | |
if config.DETECTION_MIN_CONFIDENCE: | |
conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] | |
keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), | |
tf.expand_dims(conf_keep, 0)) | |
keep = tf.sparse_tensor_to_dense(keep)[0] | |
# Apply per-class NMS | |
# 1. Prepare variables | |
pre_nms_class_ids = tf.gather(class_ids, keep) | |
pre_nms_scores = tf.gather(class_scores, keep) | |
pre_nms_rois = tf.gather(refined_rois, keep) | |
unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] | |
def nms_keep_map(class_id): | |
"""Apply Non-Maximum Suppression on ROIs of the given class.""" | |
# Indices of ROIs of the given class | |
ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] | |
# Apply NMS | |
class_keep = tf.image.non_max_suppression( | |
tf.gather(pre_nms_rois, ixs), | |
tf.gather(pre_nms_scores, ixs), | |
max_output_size=config.DETECTION_MAX_INSTANCES, | |
iou_threshold=config.DETECTION_NMS_THRESHOLD) | |
# Map indicies | |
class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) | |
# Pad with -1 so returned tensors have the same shape | |
gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] | |
class_keep = tf.pad(class_keep, [(0, gap)], | |
mode='CONSTANT', constant_values=-1) | |
# Set shape so map_fn() can infer result shape | |
class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) | |
return class_keep | |
# 2. Map over class IDs | |
nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, | |
dtype=tf.int64) | |
# 3. Merge results into one list, and remove -1 padding | |
nms_keep = tf.reshape(nms_keep, [-1]) | |
nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) | |
# 4. Compute intersection between keep and nms_keep | |
keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), | |
tf.expand_dims(nms_keep, 0)) | |
keep = tf.sparse_tensor_to_dense(keep)[0] | |
# Keep top detections | |
roi_count = config.DETECTION_MAX_INSTANCES | |
class_scores_keep = tf.gather(class_scores, keep) | |
num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) | |
top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] | |
keep = tf.gather(keep, top_ids) | |
# Arrange output as [N, (y1, x1, y2, x2, class_id, score)] | |
# Coordinates are normalized. | |
detections = tf.concat([ | |
tf.gather(refined_rois, keep), | |
tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], | |
tf.gather(class_scores, keep)[..., tf.newaxis] | |
], axis=1) | |
# Pad with zeros if detections < DETECTION_MAX_INSTANCES | |
gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] | |
detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") | |
return detections | |
class DetectionLayer(KE.Layer): | |
"""Takes classified proposal boxes and their bounding box deltas and | |
returns the final detection boxes. | |
Returns: | |
[batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where | |
coordinates are normalized. | |
""" | |
def __init__(self, config=None, **kwargs): | |
super(DetectionLayer, self).__init__(**kwargs) | |
self.config = config | |
def call(self, inputs): | |
rois = inputs[0] | |
mrcnn_class = inputs[1] | |
mrcnn_bbox = inputs[2] | |
image_meta = inputs[3] | |
# Get windows of images in normalized coordinates. Windows are the area | |
# in the image that excludes the padding. | |
# Use the shape of the first image in the batch to normalize the window | |
# because we know that all images get resized to the same size. | |
m = parse_image_meta_graph(image_meta) | |
image_shape = m['image_shape'][0] | |
window = norm_boxes_graph(m['window'], image_shape[:2]) | |
# Run detection refinement graph on each item in the batch | |
detections_batch = utils.batch_slice( | |
[rois, mrcnn_class, mrcnn_bbox, window], | |
lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), | |
self.config.IMAGES_PER_GPU) | |
# Reshape output | |
# [batch, num_detections, (y1, x1, y2, x2, class_score)] in | |
# normalized coordinates | |
return tf.reshape( | |
detections_batch, | |
[self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6]) | |
def compute_output_shape(self, input_shape): | |
return (None, self.config.DETECTION_MAX_INSTANCES, 6) | |
############################################################ | |
# Region Proposal Network (RPN) | |
############################################################ | |
def rpn_graph(feature_map, anchors_per_location, anchor_stride): | |
"""Builds the computation graph of Region Proposal Network. | |
feature_map: backbone features [batch, height, width, depth] | |
anchors_per_location: number of anchors per pixel in the feature map | |
anchor_stride: Controls the density of anchors. Typically 1 (anchors for | |
every pixel in the feature map), or 2 (every other pixel). | |
Returns: | |
rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) | |
rpn_probs: [batch, H, W, 2] Anchor classifier probabilities. | |
rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be | |
applied to anchors. | |
""" | |
# TODO: check if stride of 2 causes alignment issues if the featuremap | |
# is not even. | |
# Shared convolutional base of the RPN | |
shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu', | |
strides=anchor_stride, | |
name='rpn_conv_shared')(feature_map) | |
# Anchor Score. [batch, height, width, anchors per location * 2]. | |
x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', | |
activation='linear', name='rpn_class_raw')(shared) | |
# Reshape to [batch, anchors, 2] | |
rpn_class_logits = KL.Lambda( | |
lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) | |
# Softmax on last dimension of BG/FG. | |
rpn_probs = KL.Activation( | |
"softmax", name="rpn_class_xxx")(rpn_class_logits) | |
# Bounding box refinement. [batch, H, W, anchors per location, depth] | |
# where depth is [x, y, log(w), log(h)] | |
x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid", | |
activation='linear', name='rpn_bbox_pred')(shared) | |
# Reshape to [batch, anchors, 4] | |
rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) | |
return [rpn_class_logits, rpn_probs, rpn_bbox] | |
def build_rpn_model(anchor_stride, anchors_per_location, depth): | |
"""Builds a Keras model of the Region Proposal Network. | |
It wraps the RPN graph so it can be used multiple times with shared | |
weights. | |
anchors_per_location: number of anchors per pixel in the feature map | |
anchor_stride: Controls the density of anchors. Typically 1 (anchors for | |
every pixel in the feature map), or 2 (every other pixel). | |
depth: Depth of the backbone feature map. | |
Returns a Keras Model object. The model outputs, when called, are: | |
rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) | |
rpn_probs: [batch, W, W, 2] Anchor classifier probabilities. | |
rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be | |
applied to anchors. | |
""" | |
input_feature_map = KL.Input(shape=[None, None, depth], | |
name="input_rpn_feature_map") | |
outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) | |
return KM.Model([input_feature_map], outputs, name="rpn_model") | |
############################################################ | |
# Feature Pyramid Network Heads | |
############################################################ | |
def fpn_classifier_graph(rois, feature_maps, image_meta, | |
pool_size, num_classes, train_bn=True): | |
"""Builds the computation graph of the feature pyramid network classifier | |
and regressor heads. | |
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized | |
coordinates. | |
feature_maps: List of feature maps from diffent layers of the pyramid, | |
[P2, P3, P4, P5]. Each has a different resolution. | |
- image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
pool_size: The width of the square feature map generated from ROI Pooling. | |
num_classes: number of classes, which determines the depth of the results | |
train_bn: Boolean. Train or freeze Batch Norm layres | |
Returns: | |
logits: [N, NUM_CLASSES] classifier logits (before softmax) | |
probs: [N, NUM_CLASSES] classifier probabilities | |
bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to | |
proposal boxes | |
""" | |
# ROI Pooling | |
# Shape: [batch, num_boxes, pool_height, pool_width, channels] | |
x = PyramidROIAlign([pool_size, pool_size], | |
name="roi_align_classifier")([rois, image_meta] + feature_maps) | |
# Two 1024 FC layers (implemented with Conv2D for consistency) | |
x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"), | |
name="mrcnn_class_conv1")(x) | |
x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)), | |
name="mrcnn_class_conv2")(x) | |
x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), | |
name="pool_squeeze")(x) | |
# Classifier head | |
mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes), | |
name='mrcnn_class_logits')(shared) | |
mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), | |
name="mrcnn_class")(mrcnn_class_logits) | |
# BBox head | |
# [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))] | |
x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'), | |
name='mrcnn_bbox_fc')(shared) | |
# Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))] | |
s = K.int_shape(x) | |
mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) | |
return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox | |
def build_fpn_mask_graph(rois, feature_maps, image_meta, | |
pool_size, num_classes, train_bn=True): | |
"""Builds the computation graph of the mask head of Feature Pyramid Network. | |
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized | |
coordinates. | |
feature_maps: List of feature maps from diffent layers of the pyramid, | |
[P2, P3, P4, P5]. Each has a different resolution. | |
image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
pool_size: The width of the square feature map generated from ROI Pooling. | |
num_classes: number of classes, which determines the depth of the results | |
train_bn: Boolean. Train or freeze Batch Norm layres | |
Returns: Masks [batch, roi_count, height, width, num_classes] | |
""" | |
# ROI Pooling | |
# Shape: [batch, boxes, pool_height, pool_width, channels] | |
x = PyramidROIAlign([pool_size, pool_size], | |
name="roi_align_mask")([rois, image_meta] + feature_maps) | |
# Conv layers | |
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), | |
name="mrcnn_mask_conv1")(x) | |
x = KL.TimeDistributed(BatchNorm(), | |
name='mrcnn_mask_bn1')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), | |
name="mrcnn_mask_conv2")(x) | |
x = KL.TimeDistributed(BatchNorm(), | |
name='mrcnn_mask_bn2')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), | |
name="mrcnn_mask_conv3")(x) | |
x = KL.TimeDistributed(BatchNorm(), | |
name='mrcnn_mask_bn3')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), | |
name="mrcnn_mask_conv4")(x) | |
x = KL.TimeDistributed(BatchNorm(), | |
name='mrcnn_mask_bn4')(x, training=train_bn) | |
x = KL.Activation('relu')(x) | |
x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), | |
name="mrcnn_mask_deconv")(x) | |
x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), | |
name="mrcnn_mask")(x) | |
return x | |
############################################################ | |
# Loss Functions | |
############################################################ | |
def smooth_l1_loss(y_true, y_pred): | |
"""Implements Smooth-L1 loss. | |
y_true and y_pred are typicallly: [N, 4], but could be any shape. | |
""" | |
diff = K.abs(y_true - y_pred) | |
less_than_one = K.cast(K.less(diff, 1.0), "float32") | |
loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) | |
return loss | |
def rpn_class_loss_graph(rpn_match, rpn_class_logits): | |
"""RPN anchor classifier loss. | |
rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, | |
-1=negative, 0=neutral anchor. | |
rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG. | |
""" | |
# Squeeze last dim to simplify | |
rpn_match = tf.squeeze(rpn_match, -1) | |
# Get anchor classes. Convert the -1/+1 match to 0/1 values. | |
anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) | |
# Positive and Negative anchors contribute to the loss, | |
# but neutral anchors (match value = 0) don't. | |
indices = tf.where(K.not_equal(rpn_match, 0)) | |
# Pick rows that contribute to the loss and filter out the rest. | |
rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) | |
anchor_class = tf.gather_nd(anchor_class, indices) | |
# Crossentropy loss | |
loss = K.sparse_categorical_crossentropy(target=anchor_class, | |
output=rpn_class_logits, | |
from_logits=True) | |
loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) | |
return loss | |
def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): | |
"""Return the RPN bounding box loss graph. | |
config: the model config object. | |
target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. | |
Uses 0 padding to fill in unsed bbox deltas. | |
rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, | |
-1=negative, 0=neutral anchor. | |
rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] | |
""" | |
# Positive anchors contribute to the loss, but negative and | |
# neutral anchors (match value of 0 or -1) don't. | |
rpn_match = K.squeeze(rpn_match, -1) | |
indices = tf.where(K.equal(rpn_match, 1)) | |
# Pick bbox deltas that contribute to the loss | |
rpn_bbox = tf.gather_nd(rpn_bbox, indices) | |
# Trim target bounding box deltas to the same length as rpn_bbox. | |
batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) | |
target_bbox = batch_pack_graph(target_bbox, batch_counts, | |
config.IMAGES_PER_GPU) | |
# TODO: use smooth_l1_loss() rather than reimplementing here | |
# to reduce code duplication | |
diff = K.abs(target_bbox - rpn_bbox) | |
less_than_one = K.cast(K.less(diff, 1.0), "float32") | |
loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) | |
loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) | |
return loss | |
def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, | |
active_class_ids): | |
"""Loss for the classifier head of Mask RCNN. | |
target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero | |
padding to fill in the array. | |
pred_class_logits: [batch, num_rois, num_classes] | |
active_class_ids: [batch, num_classes]. Has a value of 1 for | |
classes that are in the dataset of the image, and 0 | |
for classes that are not in the dataset. | |
""" | |
target_class_ids = tf.cast(target_class_ids, 'int64') | |
# Find predictions of classes that are not in the dataset. | |
pred_class_ids = tf.argmax(pred_class_logits, axis=2) | |
# TODO: Update this line to work with batch > 1. Right now it assumes all | |
# images in a batch have the same active_class_ids | |
pred_active = tf.gather(active_class_ids[0], pred_class_ids) | |
# Loss | |
loss = tf.nn.sparse_softmax_cross_entropy_with_logits( | |
labels=target_class_ids, logits=pred_class_logits) | |
# Erase losses of predictions of classes that are not in the active | |
# classes of the image. | |
loss = loss * pred_active | |
# Computer loss mean. Use only predictions that contribute | |
# to the loss to get a correct mean. | |
loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) | |
return loss | |
def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): | |
"""Loss for Mask R-CNN bounding box refinement. | |
target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] | |
target_class_ids: [batch, num_rois]. Integer class IDs. | |
pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] | |
""" | |
# Reshape to merge batch and roi dimensions for simplicity. | |
target_class_ids = K.reshape(target_class_ids, (-1,)) | |
target_bbox = K.reshape(target_bbox, (-1, 4)) | |
pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) | |
# Only positive ROIs contribute to the loss. And only | |
# the right class_id of each ROI. Get their indicies. | |
positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] | |
positive_roi_class_ids = tf.cast( | |
tf.gather(target_class_ids, positive_roi_ix), tf.int64) | |
indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) | |
# Gather the deltas (predicted and true) that contribute to loss | |
target_bbox = tf.gather(target_bbox, positive_roi_ix) | |
pred_bbox = tf.gather_nd(pred_bbox, indices) | |
# Smooth-L1 Loss | |
loss = K.switch(tf.size(target_bbox) > 0, | |
smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), | |
tf.constant(0.0)) | |
loss = K.mean(loss) | |
return loss | |
def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): | |
"""Mask binary cross-entropy loss for the masks head. | |
target_masks: [batch, num_rois, height, width]. | |
A float32 tensor of values 0 or 1. Uses zero padding to fill array. | |
target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. | |
pred_masks: [batch, proposals, height, width, num_classes] float32 tensor | |
with values from 0 to 1. | |
""" | |
# Reshape for simplicity. Merge first two dimensions into one. | |
target_class_ids = K.reshape(target_class_ids, (-1,)) | |
mask_shape = tf.shape(target_masks) | |
target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) | |
pred_shape = tf.shape(pred_masks) | |
pred_masks = K.reshape(pred_masks, | |
(-1, pred_shape[2], pred_shape[3], pred_shape[4])) | |
# Permute predicted masks to [N, num_classes, height, width] | |
pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) | |
# Only positive ROIs contribute to the loss. And only | |
# the class specific mask of each ROI. | |
positive_ix = tf.where(target_class_ids > 0)[:, 0] | |
positive_class_ids = tf.cast( | |
tf.gather(target_class_ids, positive_ix), tf.int64) | |
indices = tf.stack([positive_ix, positive_class_ids], axis=1) | |
# Gather the masks (predicted and true) that contribute to loss | |
y_true = tf.gather(target_masks, positive_ix) | |
y_pred = tf.gather_nd(pred_masks, indices) | |
# Compute binary cross entropy. If no positive ROIs, then return 0. | |
# shape: [batch, roi, num_classes] | |
loss = K.switch(tf.size(y_true) > 0, | |
K.binary_crossentropy(target=y_true, output=y_pred), | |
tf.constant(0.0)) | |
loss = K.mean(loss) | |
return loss | |
############################################################ | |
# Data Generator | |
############################################################ | |
def load_image_gt(dataset, config, image_id, augment=False, augmentation=None, | |
use_mini_mask=False): | |
"""Load and return ground truth data for an image (image, mask, bounding boxes). | |
augment: (Depricated. Use augmentation instead). If true, apply random | |
image augmentation. Currently, only horizontal flipping is offered. | |
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. | |
For example, passing imgaug.augmenters.Fliplr(0.5) flips images | |
right/left 50% of the time. | |
use_mini_mask: If False, returns full-size masks that are the same height | |
and width as the original image. These can be big, for example | |
1024x1024x100 (for 100 instances). Mini masks are smaller, typically, | |
224x224 and are generated by extracting the bounding box of the | |
object and resizing it to MINI_MASK_SHAPE. | |
Returns: | |
image: [height, width, 3] | |
shape: the original shape of the image before resizing and cropping. | |
class_ids: [instance_count] Integer class IDs | |
bbox: [instance_count, (y1, x1, y2, x2)] | |
mask: [height, width, instance_count]. The height and width are those | |
of the image unless use_mini_mask is True, in which case they are | |
defined in MINI_MASK_SHAPE. | |
""" | |
# Load image and mask | |
image = dataset.load_image(image_id) | |
mask, class_ids = dataset.load_mask(image_id) | |
original_shape = image.shape | |
image, window, scale, padding = utils.resize_image( | |
image, | |
min_dim=config.IMAGE_MIN_DIM, | |
max_dim=config.IMAGE_MAX_DIM, | |
mode=config.IMAGE_RESIZE_MODE) | |
mask = utils.resize_mask(mask, scale, padding) | |
# Random horizontal flips. | |
# TODO: will be removed in a future update in favor of augmentation | |
if augment: | |
logging.warning("'augment' is depricated. Use 'augmentation' instead.") | |
if random.randint(0, 1): | |
image = np.fliplr(image) | |
mask = np.fliplr(mask) | |
# Augmentation | |
# This requires the imgaug lib (https://github.com/aleju/imgaug) | |
if augmentation: | |
import imgaug | |
# Augmentors that are safe to apply to masks | |
# Some, such as Affine, have settings that make them unsafe, so always | |
# test your augmentation on masks | |
MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes", | |
"Fliplr", "Flipud", "CropAndPad", | |
"Affine", "PiecewiseAffine"] | |
def hook(images, augmenter, parents, default): | |
"""Determines which augmenters to apply to masks.""" | |
return (augmenter.__class__.__name__ in MASK_AUGMENTERS) | |
# Store shapes before augmentation to compare | |
image_shape = image.shape | |
mask_shape = mask.shape | |
# Make augmenters deterministic to apply similarly to images and masks | |
det = augmentation.to_deterministic() | |
image = det.augment_image(image) | |
# Change mask to np.uint8 because imgaug doesn't support np.bool | |
mask = det.augment_image(mask.astype(np.uint8), | |
hooks=imgaug.HooksImages(activator=hook)) | |
# Verify that shapes didn't change | |
assert image.shape == image_shape, "Augmentation shouldn't change image size" | |
assert mask.shape == mask_shape, "Augmentation shouldn't change mask size" | |
# Change mask back to bool | |
mask = mask.astype(np.bool) | |
# Note that some boxes might be all zeros if the corresponding mask got cropped out. | |
# and here is to filter them out | |
_idx = np.sum(mask, axis=(0, 1)) > 0 | |
mask = mask[:, :, _idx] | |
class_ids = class_ids[_idx] | |
# Bounding boxes. Note that some boxes might be all zeros | |
# if the corresponding mask got cropped out. | |
# bbox: [num_instances, (y1, x1, y2, x2)] | |
bbox = utils.extract_bboxes(mask) | |
# Active classes | |
# Different datasets have different classes, so track the | |
# classes supported in the dataset of this image. | |
active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) | |
source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] | |
active_class_ids[source_class_ids] = 1 | |
# Resize masks to smaller size to reduce memory usage | |
if use_mini_mask: | |
mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) | |
# Image meta data | |
image_meta = compose_image_meta(image_id, original_shape, image.shape, | |
window, scale, active_class_ids) | |
return image, image_meta, class_ids, bbox, mask | |
def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): | |
"""Generate targets for training Stage 2 classifier and mask heads. | |
This is not used in normal training. It's useful for debugging or to train | |
the Mask RCNN heads without using the RPN head. | |
Inputs: | |
rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. | |
gt_class_ids: [instance count] Integer class IDs | |
gt_boxes: [instance count, (y1, x1, y2, x2)] | |
gt_masks: [height, width, instance count] Grund truth masks. Can be full | |
size or mini-masks. | |
Returns: | |
rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] | |
class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. | |
bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific | |
bbox refinements. | |
masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped | |
to bbox boundaries and resized to neural network output size. | |
""" | |
assert rpn_rois.shape[0] > 0 | |
assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( | |
gt_class_ids.dtype) | |
assert gt_boxes.dtype == np.int32, "Expected int but got {}".format( | |
gt_boxes.dtype) | |
assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format( | |
gt_masks.dtype) | |
# It's common to add GT Boxes to ROIs but we don't do that here because | |
# according to XinLei Chen's paper, it doesn't help. | |
# Trim empty padding in gt_boxes and gt_masks parts | |
instance_ids = np.where(gt_class_ids > 0)[0] | |
assert instance_ids.shape[0] > 0, "Image must contain instances." | |
gt_class_ids = gt_class_ids[instance_ids] | |
gt_boxes = gt_boxes[instance_ids] | |
gt_masks = gt_masks[:, :, instance_ids] | |
# Compute areas of ROIs and ground truth boxes. | |
rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \ | |
(rpn_rois[:, 3] - rpn_rois[:, 1]) | |
gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \ | |
(gt_boxes[:, 3] - gt_boxes[:, 1]) | |
# Compute overlaps [rpn_rois, gt_boxes] | |
overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) | |
for i in range(overlaps.shape[1]): | |
gt = gt_boxes[i] | |
overlaps[:, i] = utils.compute_iou( | |
gt, rpn_rois, gt_box_area[i], rpn_roi_area) | |
# Assign ROIs to GT boxes | |
rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) | |
rpn_roi_iou_max = overlaps[np.arange( | |
overlaps.shape[0]), rpn_roi_iou_argmax] | |
# GT box assigned to each ROI | |
rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] | |
rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] | |
# Positive ROIs are those with >= 0.5 IoU with a GT box. | |
fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] | |
# Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) | |
# TODO: To hard example mine or not to hard example mine, that's the question | |
# bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] | |
bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] | |
# Subsample ROIs. Aim for 33% foreground. | |
# FG | |
fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) | |
if fg_ids.shape[0] > fg_roi_count: | |
keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) | |
else: | |
keep_fg_ids = fg_ids | |
# BG | |
remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] | |
if bg_ids.shape[0] > remaining: | |
keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) | |
else: | |
keep_bg_ids = bg_ids | |
# Combine indicies of ROIs to keep | |
keep = np.concatenate([keep_fg_ids, keep_bg_ids]) | |
# Need more? | |
remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] | |
if remaining > 0: | |
# Looks like we don't have enough samples to maintain the desired | |
# balance. Reduce requirements and fill in the rest. This is | |
# likely different from the Mask RCNN paper. | |
# There is a small chance we have neither fg nor bg samples. | |
if keep.shape[0] == 0: | |
# Pick bg regions with easier IoU threshold | |
bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] | |
assert bg_ids.shape[0] >= remaining | |
keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) | |
assert keep_bg_ids.shape[0] == remaining | |
keep = np.concatenate([keep, keep_bg_ids]) | |
else: | |
# Fill the rest with repeated bg rois. | |
keep_extra_ids = np.random.choice( | |
keep_bg_ids, remaining, replace=True) | |
keep = np.concatenate([keep, keep_extra_ids]) | |
assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \ | |
"keep doesn't match ROI batch size {}, {}".format( | |
keep.shape[0], config.TRAIN_ROIS_PER_IMAGE) | |
# Reset the gt boxes assigned to BG ROIs. | |
rpn_roi_gt_boxes[keep_bg_ids, :] = 0 | |
rpn_roi_gt_class_ids[keep_bg_ids] = 0 | |
# For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. | |
rois = rpn_rois[keep] | |
roi_gt_boxes = rpn_roi_gt_boxes[keep] | |
roi_gt_class_ids = rpn_roi_gt_class_ids[keep] | |
roi_gt_assignment = rpn_roi_iou_argmax[keep] | |
# Class-aware bbox deltas. [y, x, log(h), log(w)] | |
bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, | |
config.NUM_CLASSES, 4), dtype=np.float32) | |
pos_ids = np.where(roi_gt_class_ids > 0)[0] | |
bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( | |
rois[pos_ids], roi_gt_boxes[pos_ids, :4]) | |
# Normalize bbox refinements | |
bboxes /= config.BBOX_STD_DEV | |
# Generate class-specific target masks | |
masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), | |
dtype=np.float32) | |
for i in pos_ids: | |
class_id = roi_gt_class_ids[i] | |
assert class_id > 0, "class id must be greater than 0" | |
gt_id = roi_gt_assignment[i] | |
class_mask = gt_masks[:, :, gt_id] | |
if config.USE_MINI_MASK: | |
# Create a mask placeholder, the size of the image | |
placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) | |
# GT box | |
gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] | |
gt_w = gt_x2 - gt_x1 | |
gt_h = gt_y2 - gt_y1 | |
# Resize mini mask to size of GT box | |
placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \ | |
np.round(skimage.transform.resize( | |
class_mask, (gt_h, gt_w), order=1, mode="constant")).astype(bool) | |
# Place the mini batch in the placeholder | |
class_mask = placeholder | |
# Pick part of the mask and resize it | |
y1, x1, y2, x2 = rois[i].astype(np.int32) | |
m = class_mask[y1:y2, x1:x2] | |
mask = skimage.transform.resize(m, config.MASK_SHAPE, order=1, mode="constant") | |
masks[i, :, :, class_id] = mask | |
return rois, roi_gt_class_ids, bboxes, masks | |
def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): | |
"""Given the anchors and GT boxes, compute overlaps and identify positive | |
anchors and deltas to refine them to match their corresponding GT boxes. | |
anchors: [num_anchors, (y1, x1, y2, x2)] | |
gt_class_ids: [num_gt_boxes] Integer class IDs. | |
gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] | |
Returns: | |
rpn_match: [N] (int32) matches between anchors and GT boxes. | |
1 = positive anchor, -1 = negative anchor, 0 = neutral | |
rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. | |
""" | |
# RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral | |
rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) | |
# RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] | |
rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) | |
# Handle COCO crowds | |
# A crowd box in COCO is a bounding box around several instances. Exclude | |
# them from training. A crowd box is given a negative class ID. | |
crowd_ix = np.where(gt_class_ids < 0)[0] | |
if crowd_ix.shape[0] > 0: | |
# Filter out crowds from ground truth class IDs and boxes | |
non_crowd_ix = np.where(gt_class_ids > 0)[0] | |
crowd_boxes = gt_boxes[crowd_ix] | |
gt_class_ids = gt_class_ids[non_crowd_ix] | |
gt_boxes = gt_boxes[non_crowd_ix] | |
# Compute overlaps with crowd boxes [anchors, crowds] | |
crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) | |
crowd_iou_max = np.amax(crowd_overlaps, axis=1) | |
no_crowd_bool = (crowd_iou_max < 0.001) | |
else: | |
# All anchors don't intersect a crowd | |
no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) | |
# Compute overlaps [num_anchors, num_gt_boxes] | |
overlaps = utils.compute_overlaps(anchors, gt_boxes) | |
# Match anchors to GT Boxes | |
# If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. | |
# If an anchor overlaps a GT box with IoU < 0.3 then it's negative. | |
# Neutral anchors are those that don't match the conditions above, | |
# and they don't influence the loss function. | |
# However, don't keep any GT box unmatched (rare, but happens). Instead, | |
# match it to the closest anchor (even if its max IoU is < 0.3). | |
# | |
# 1. Set negative anchors first. They get overwritten below if a GT box is | |
# matched to them. Skip boxes in crowd areas. | |
anchor_iou_argmax = np.argmax(overlaps, axis=1) | |
anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] | |
rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 | |
# 2. Set an anchor for each GT box (regardless of IoU value). | |
# TODO: If multiple anchors have the same IoU match all of them | |
gt_iou_argmax = np.argmax(overlaps, axis=0) | |
rpn_match[gt_iou_argmax] = 1 | |
# 3. Set anchors with high overlap as positive. | |
rpn_match[anchor_iou_max >= 0.7] = 1 | |
# Subsample to balance positive and negative anchors | |
# Don't let positives be more than half the anchors | |
ids = np.where(rpn_match == 1)[0] | |
extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) | |
if extra > 0: | |
# Reset the extra ones to neutral | |
ids = np.random.choice(ids, extra, replace=False) | |
rpn_match[ids] = 0 | |
# Same for negative proposals | |
ids = np.where(rpn_match == -1)[0] | |
extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - | |
np.sum(rpn_match == 1)) | |
if extra > 0: | |
# Rest the extra ones to neutral | |
ids = np.random.choice(ids, extra, replace=False) | |
rpn_match[ids] = 0 | |
# For positive anchors, compute shift and scale needed to transform them | |
# to match the corresponding GT boxes. | |
ids = np.where(rpn_match == 1)[0] | |
ix = 0 # index into rpn_bbox | |
# TODO: use box_refinement() rather than duplicating the code here | |
for i, a in zip(ids, anchors[ids]): | |
# Closest gt box (it might have IoU < 0.7) | |
gt = gt_boxes[anchor_iou_argmax[i]] | |
# Convert coordinates to center plus width/height. | |
# GT Box | |
gt_h = gt[2] - gt[0] | |
gt_w = gt[3] - gt[1] | |
gt_center_y = gt[0] + 0.5 * gt_h | |
gt_center_x = gt[1] + 0.5 * gt_w | |
# Anchor | |
a_h = a[2] - a[0] | |
a_w = a[3] - a[1] | |
a_center_y = a[0] + 0.5 * a_h | |
a_center_x = a[1] + 0.5 * a_w | |
# Compute the bbox refinement that the RPN should predict. | |
rpn_bbox[ix] = [ | |
(gt_center_y - a_center_y) / a_h, | |
(gt_center_x - a_center_x) / a_w, | |
np.log(gt_h / a_h), | |
np.log(gt_w / a_w), | |
] | |
# Normalize | |
rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV | |
ix += 1 | |
return rpn_match, rpn_bbox | |
def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): | |
"""Generates ROI proposals similar to what a region proposal network | |
would generate. | |
image_shape: [Height, Width, Depth] | |
count: Number of ROIs to generate | |
gt_class_ids: [N] Integer ground truth class IDs | |
gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. | |
Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. | |
""" | |
# placeholder | |
rois = np.zeros((count, 4), dtype=np.int32) | |
# Generate random ROIs around GT boxes (90% of count) | |
rois_per_box = int(0.9 * count / gt_boxes.shape[0]) | |
for i in range(gt_boxes.shape[0]): | |
gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] | |
h = gt_y2 - gt_y1 | |
w = gt_x2 - gt_x1 | |
# random boundaries | |
r_y1 = max(gt_y1 - h, 0) | |
r_y2 = min(gt_y2 + h, image_shape[0]) | |
r_x1 = max(gt_x1 - w, 0) | |
r_x2 = min(gt_x2 + w, image_shape[1]) | |
# To avoid generating boxes with zero area, we generate double what | |
# we need and filter out the extra. If we get fewer valid boxes | |
# than we need, we loop and try again. | |
while True: | |
y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) | |
x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) | |
# Filter out zero area boxes | |
threshold = 1 | |
y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= | |
threshold][:rois_per_box] | |
x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= | |
threshold][:rois_per_box] | |
if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: | |
break | |
# Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape | |
# into x1, y1, x2, y2 order | |
x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) | |
y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) | |
box_rois = np.hstack([y1, x1, y2, x2]) | |
rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois | |
# Generate random ROIs anywhere in the image (10% of count) | |
remaining_count = count - (rois_per_box * gt_boxes.shape[0]) | |
# To avoid generating boxes with zero area, we generate double what | |
# we need and filter out the extra. If we get fewer valid boxes | |
# than we need, we loop and try again. | |
while True: | |
y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) | |
x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) | |
# Filter out zero area boxes | |
threshold = 1 | |
y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= | |
threshold][:remaining_count] | |
x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= | |
threshold][:remaining_count] | |
if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: | |
break | |
# Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape | |
# into x1, y1, x2, y2 order | |
x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) | |
y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) | |
global_rois = np.hstack([y1, x1, y2, x2]) | |
rois[-remaining_count:] = global_rois | |
return rois | |
def data_generator(dataset, config, shuffle=True, augment=False, augmentation=None, | |
random_rois=0, batch_size=1, detection_targets=False): | |
"""A generator that returns images and corresponding target class ids, | |
bounding box deltas, and masks. | |
dataset: The Dataset object to pick data from | |
config: The model config object | |
shuffle: If True, shuffles the samples before every epoch | |
augment: (Depricated. Use augmentation instead). If true, apply random | |
image augmentation. Currently, only horizontal flipping is offered. | |
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. | |
For example, passing imgaug.augmenters.Fliplr(0.5) flips images | |
right/left 50% of the time. | |
random_rois: If > 0 then generate proposals to be used to train the | |
network classifier and mask heads. Useful if training | |
the Mask RCNN part without the RPN. | |
batch_size: How many images to return in each call | |
detection_targets: If True, generate detection targets (class IDs, bbox | |
deltas, and masks). Typically for debugging or visualizations because | |
in trainig detection targets are generated by DetectionTargetLayer. | |
Returns a Python generator. Upon calling next() on it, the | |
generator returns two lists, inputs and outputs. The containtes | |
of the lists differs depending on the received arguments: | |
inputs list: | |
- images: [batch, H, W, C] | |
- image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
- rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) | |
- rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. | |
- gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs | |
- gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] | |
- gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width | |
are those of the image unless use_mini_mask is True, in which | |
case they are defined in MINI_MASK_SHAPE. | |
outputs list: Usually empty in regular training. But if detection_targets | |
is True then the outputs list contains target class_ids, bbox deltas, | |
and masks. | |
""" | |
b = 0 # batch item index | |
image_index = -1 | |
image_ids = np.copy(dataset.image_ids) | |
error_count = 0 | |
# Anchors | |
# [anchor_count, (y1, x1, y2, x2)] | |
backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE) | |
anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, | |
config.RPN_ANCHOR_RATIOS, | |
backbone_shapes, | |
config.BACKBONE_STRIDES, | |
config.RPN_ANCHOR_STRIDE) | |
# Keras requires a generator to run indefinately. | |
while True: | |
try: | |
# Increment index to pick next image. Shuffle if at the start of an epoch. | |
image_index = (image_index + 1) % len(image_ids) | |
if shuffle and image_index == 0: | |
np.random.shuffle(image_ids) | |
# Get GT bounding boxes and masks for image. | |
image_id = image_ids[image_index] | |
image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ | |
load_image_gt(dataset, config, image_id, augment=augment, | |
augmentation=augmentation, | |
use_mini_mask=config.USE_MINI_MASK) | |
# Skip images that have no instances. This can happen in cases | |
# where we train on a subset of classes and the image doesn't | |
# have any of the classes we care about. | |
if not np.any(gt_class_ids > 0): | |
continue | |
# RPN Targets | |
rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, | |
gt_class_ids, gt_boxes, config) | |
# Mask R-CNN Targets | |
if random_rois: | |
rpn_rois = generate_random_rois( | |
image.shape, random_rois, gt_class_ids, gt_boxes) | |
if detection_targets: | |
rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\ | |
build_detection_targets( | |
rpn_rois, gt_class_ids, gt_boxes, gt_masks, config) | |
# Init batch arrays | |
if b == 0: | |
batch_image_meta = np.zeros( | |
(batch_size,) + image_meta.shape, dtype=image_meta.dtype) | |
batch_rpn_match = np.zeros( | |
[batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype) | |
batch_rpn_bbox = np.zeros( | |
[batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype) | |
batch_images = np.zeros( | |
(batch_size,) + image.shape, dtype=np.float32) | |
batch_gt_class_ids = np.zeros( | |
(batch_size, config.MAX_GT_INSTANCES), dtype=np.int32) | |
batch_gt_boxes = np.zeros( | |
(batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32) | |
batch_gt_masks = np.zeros( | |
(batch_size, gt_masks.shape[1], gt_masks.shape[1], | |
config.MAX_GT_INSTANCES), dtype=gt_masks.dtype) | |
if random_rois: | |
batch_rpn_rois = np.zeros( | |
(batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype) | |
if detection_targets: | |
batch_rois = np.zeros( | |
(batch_size,) + rois.shape, dtype=rois.dtype) | |
batch_mrcnn_class_ids = np.zeros( | |
(batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype) | |
batch_mrcnn_bbox = np.zeros( | |
(batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype) | |
batch_mrcnn_mask = np.zeros( | |
(batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype) | |
# If more instances than fits in the array, sub-sample from them. | |
if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: | |
ids = np.random.choice( | |
np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False) | |
gt_class_ids = gt_class_ids[ids] | |
gt_boxes = gt_boxes[ids] | |
gt_masks = gt_masks[:, :, ids] | |
# Add to batch | |
batch_image_meta[b] = image_meta | |
batch_rpn_match[b] = rpn_match[:, np.newaxis] | |
batch_rpn_bbox[b] = rpn_bbox | |
batch_images[b] = mold_image(image.astype(np.float32), config) | |
batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids | |
batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes | |
batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks | |
if random_rois: | |
batch_rpn_rois[b] = rpn_rois | |
if detection_targets: | |
batch_rois[b] = rois | |
batch_mrcnn_class_ids[b] = mrcnn_class_ids | |
batch_mrcnn_bbox[b] = mrcnn_bbox | |
batch_mrcnn_mask[b] = mrcnn_mask | |
b += 1 | |
# Batch full? | |
if b >= batch_size: | |
inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox, | |
batch_gt_class_ids, batch_gt_boxes, batch_gt_masks] | |
outputs = [] | |
if random_rois: | |
inputs.extend([batch_rpn_rois]) | |
if detection_targets: | |
inputs.extend([batch_rois]) | |
# Keras requires that output and targets have the same number of dimensions | |
batch_mrcnn_class_ids = np.expand_dims( | |
batch_mrcnn_class_ids, -1) | |
outputs.extend( | |
[batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask]) | |
yield inputs, outputs | |
# start a new batch | |
b = 0 | |
except (GeneratorExit, KeyboardInterrupt): | |
raise | |
except: | |
# Log it and skip the image | |
logging.exception("Error processing image {}".format( | |
dataset.image_info[image_id])) | |
error_count += 1 | |
if error_count > 5: | |
raise | |
############################################################ | |
# MaskRCNN Class | |
############################################################ | |
class MaskRCNN(): | |
"""Encapsulates the Mask RCNN model functionality. | |
The actual Keras model is in the keras_model property. | |
""" | |
def __init__(self, mode, config, model_dir): | |
""" | |
mode: Either "training" or "inference" | |
config: A Sub-class of the Config class | |
model_dir: Directory to save training logs and trained weights | |
""" | |
assert mode in ['training', 'inference'] | |
self.mode = mode | |
self.config = config | |
self.model_dir = model_dir | |
self.set_log_dir() | |
self.keras_model = self.build(mode=mode, config=config) | |
def build(self, mode, config): | |
"""Build Mask R-CNN architecture. | |
input_shape: The shape of the input image. | |
mode: Either "training" or "inference". The inputs and | |
outputs of the model differ accordingly. | |
""" | |
assert mode in ['training', 'inference'] | |
# Image size must be dividable by 2 multiple times | |
h, w = config.IMAGE_SHAPE[:2] | |
if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): | |
raise Exception("Image size must be dividable by 2 at least 6 times " | |
"to avoid fractions when downscaling and upscaling." | |
"For example, use 256, 320, 384, 448, 512, ... etc. ") | |
# Inputs | |
input_image = KL.Input( | |
shape=[None, None, 3], name="input_image") | |
input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE], | |
name="input_image_meta") | |
if mode == "training": | |
# RPN GT | |
input_rpn_match = KL.Input( | |
shape=[None, 1], name="input_rpn_match", dtype=tf.int32) | |
input_rpn_bbox = KL.Input( | |
shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32) | |
# Detection GT (class IDs, bounding boxes, and masks) | |
# 1. GT Class IDs (zero padded) | |
input_gt_class_ids = KL.Input( | |
shape=[None], name="input_gt_class_ids", dtype=tf.int32) | |
# 2. GT Boxes in pixels (zero padded) | |
# [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates | |
input_gt_boxes = KL.Input( | |
shape=[None, 4], name="input_gt_boxes", dtype=tf.float32) | |
# Normalize coordinates | |
gt_boxes = KL.Lambda(lambda x: norm_boxes_graph( | |
x, K.shape(input_image)[1:3]))(input_gt_boxes) | |
# 3. GT Masks (zero padded) | |
# [batch, height, width, MAX_GT_INSTANCES] | |
if config.USE_MINI_MASK: | |
input_gt_masks = KL.Input( | |
shape=[config.MINI_MASK_SHAPE[0], | |
config.MINI_MASK_SHAPE[1], None], | |
name="input_gt_masks", dtype=bool) | |
else: | |
input_gt_masks = KL.Input( | |
shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], | |
name="input_gt_masks", dtype=bool) | |
elif mode == "inference": | |
# Anchors in normalized coordinates | |
input_anchors = KL.Input(shape=[None, 4], name="input_anchors") | |
# Build the shared convolutional layers. | |
# Bottom-up Layers | |
# Returns a list of the last layers of each stage, 5 in total. | |
# Don't create the thead (stage 5), so we pick the 4th item in the list. | |
_, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE, | |
stage5=True, train_bn=config.TRAIN_BN) | |
# Top-down Layers | |
# TODO: add assert to varify feature map sizes match what's in config | |
P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5) | |
P4 = KL.Add(name="fpn_p4add")([ | |
KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), | |
KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)]) | |
P3 = KL.Add(name="fpn_p3add")([ | |
KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), | |
KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)]) | |
P2 = KL.Add(name="fpn_p2add")([ | |
KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), | |
KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)]) | |
# Attach 3x3 conv to all P layers to get the final feature maps. | |
P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2) | |
P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3) | |
P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4) | |
P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5) | |
# P6 is used for the 5th anchor scale in RPN. Generated by | |
# subsampling from P5 with stride of 2. | |
P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) | |
# Note that P6 is used in RPN, but not in the classifier heads. | |
rpn_feature_maps = [P2, P3, P4, P5, P6] | |
mrcnn_feature_maps = [P2, P3, P4, P5] | |
# Anchors | |
if mode == "training": | |
anchors = self.get_anchors(config.IMAGE_SHAPE) | |
# Duplicate across the batch dimension because Keras requires it | |
# TODO: can this be optimized to avoid duplicating the anchors? | |
anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape) | |
# A hack to get around Keras's bad support for constants | |
anchors = KL.Lambda(lambda x: tf.constant(anchors), name="anchors")(input_image) | |
else: | |
anchors = input_anchors | |
# RPN Model | |
rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, | |
len(config.RPN_ANCHOR_RATIOS), 256) | |
# Loop through pyramid layers | |
layer_outputs = [] # list of lists | |
for p in rpn_feature_maps: | |
layer_outputs.append(rpn([p])) | |
# Concatenate layer outputs | |
# Convert from list of lists of level outputs to list of lists | |
# of outputs across levels. | |
# e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] | |
output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] | |
outputs = list(zip(*layer_outputs)) | |
outputs = [KL.Concatenate(axis=1, name=n)(list(o)) | |
for o, n in zip(outputs, output_names)] | |
rpn_class_logits, rpn_class, rpn_bbox = outputs | |
# Generate proposals | |
# Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates | |
# and zero padded. | |
proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\ | |
else config.POST_NMS_ROIS_INFERENCE | |
rpn_rois = ProposalLayer( | |
proposal_count=proposal_count, | |
nms_threshold=config.RPN_NMS_THRESHOLD, | |
name="ROI", | |
config=config)([rpn_class, rpn_bbox, anchors]) | |
if mode == "training": | |
# Class ID mask to mark class IDs supported by the dataset the image | |
# came from. | |
active_class_ids = KL.Lambda( | |
lambda x: parse_image_meta_graph(x)["active_class_ids"] | |
)(input_image_meta) | |
if not config.USE_RPN_ROIS: | |
# Ignore predicted ROIs and use ROIs provided as an input. | |
input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4], | |
name="input_roi", dtype=np.int32) | |
# Normalize coordinates | |
target_rois = KL.Lambda(lambda x: norm_boxes_graph( | |
x, K.shape(input_image)[1:3]))(input_rois) | |
else: | |
target_rois = rpn_rois | |
# Generate detection targets | |
# Subsamples proposals and generates target outputs for training | |
# Note that proposal class IDs, gt_boxes, and gt_masks are zero | |
# padded. Equally, returned rois and targets are zero padded. | |
rois, target_class_ids, target_bbox, target_mask =\ | |
DetectionTargetLayer(config, name="proposal_targets")([ | |
target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) | |
# Network Heads | |
# TODO: verify that this handles zero padded ROIs | |
mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ | |
fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta, | |
config.POOL_SIZE, config.NUM_CLASSES, | |
train_bn=config.TRAIN_BN) | |
mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps, | |
input_image_meta, | |
config.MASK_POOL_SIZE, | |
config.NUM_CLASSES, | |
train_bn=config.TRAIN_BN) | |
# TODO: clean up (use tf.identify if necessary) | |
output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) | |
# Losses | |
rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")( | |
[input_rpn_match, rpn_class_logits]) | |
rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")( | |
[input_rpn_bbox, input_rpn_match, rpn_bbox]) | |
class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")( | |
[target_class_ids, mrcnn_class_logits, active_class_ids]) | |
bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")( | |
[target_bbox, target_class_ids, mrcnn_bbox]) | |
mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")( | |
[target_mask, target_class_ids, mrcnn_mask]) | |
# Model | |
inputs = [input_image, input_image_meta, | |
input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks] | |
if not config.USE_RPN_ROIS: | |
inputs.append(input_rois) | |
outputs = [rpn_class_logits, rpn_class, rpn_bbox, | |
mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask, | |
rpn_rois, output_rois, | |
rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss] | |
model = KM.Model(inputs, outputs, name='mask_rcnn') | |
else: | |
# Network Heads | |
# Proposal classifier and BBox regressor heads | |
mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ | |
fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta, | |
config.POOL_SIZE, config.NUM_CLASSES, | |
train_bn=config.TRAIN_BN) | |
# Detections | |
# output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in | |
# normalized coordinates | |
detections = DetectionLayer(config, name="mrcnn_detection")( | |
[rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta]) | |
# Create masks for detections | |
detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections) | |
mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps, | |
input_image_meta, | |
config.MASK_POOL_SIZE, | |
config.NUM_CLASSES, | |
train_bn=config.TRAIN_BN) | |
model = KM.Model([input_image, input_image_meta, input_anchors], | |
[detections, mrcnn_class, mrcnn_bbox, | |
mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], | |
name='mask_rcnn') | |
# Add multi-GPU support. | |
if config.GPU_COUNT > 1: | |
from mrcnn.parallel_model import ParallelModel | |
model = ParallelModel(model, config.GPU_COUNT) | |
return model | |
def find_last(self): | |
"""Finds the last checkpoint file of the last trained model in the | |
model directory. | |
Returns: | |
log_dir: The directory where events and weights are saved | |
checkpoint_path: the path to the last checkpoint file | |
""" | |
# Get directory names. Each directory corresponds to a model | |
dir_names = next(os.walk(self.model_dir))[1] | |
key = self.config.NAME.lower() | |
dir_names = filter(lambda f: f.startswith(key), dir_names) | |
dir_names = sorted(dir_names) | |
if not dir_names: | |
return None, None | |
# Pick last directory | |
dir_name = os.path.join(self.model_dir, dir_names[-1]) | |
# Find the last checkpoint | |
checkpoints = next(os.walk(dir_name))[2] | |
checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) | |
checkpoints = sorted(checkpoints) | |
if not checkpoints: | |
return dir_name, None | |
checkpoint = os.path.join(dir_name, checkpoints[-1]) | |
return dir_name, checkpoint | |
def load_weights(self, filepath, by_name=False, exclude=None): | |
"""Modified version of the correspoding Keras function with | |
the addition of multi-GPU support and the ability to exclude | |
some layers from loading. | |
exlude: list of layer names to excluce | |
""" | |
import h5py | |
from keras.engine import topology | |
if exclude: | |
by_name = True | |
if h5py is None: | |
raise ImportError('`load_weights` requires h5py.') | |
f = h5py.File(filepath, mode='r') | |
if 'layer_names' not in f.attrs and 'model_weights' in f: | |
f = f['model_weights'] | |
# In multi-GPU training, we wrap the model. Get layers | |
# of the inner model because they have the weights. | |
keras_model = self.keras_model | |
layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ | |
else keras_model.layers | |
# Exclude some layers | |
if exclude: | |
layers = filter(lambda l: l.name not in exclude, layers) | |
if by_name: | |
topology.load_weights_from_hdf5_group_by_name(f, layers) | |
else: | |
topology.load_weights_from_hdf5_group(f, layers) | |
if hasattr(f, 'close'): | |
f.close() | |
# Update the log directory | |
self.set_log_dir(filepath) | |
def get_imagenet_weights(self): | |
"""Downloads ImageNet trained weights from Keras. | |
Returns path to weights file. | |
""" | |
from keras.utils.data_utils import get_file | |
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\ | |
'releases/download/v0.2/'\ | |
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' | |
weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', | |
TF_WEIGHTS_PATH_NO_TOP, | |
cache_subdir='models', | |
md5_hash='a268eb855778b3df3c7506639542a6af') | |
return weights_path | |
def compile(self, learning_rate, momentum): | |
"""Gets the model ready for training. Adds losses, regularization, and | |
metrics. Then calls the Keras compile() function. | |
""" | |
# Optimizer object | |
optimizer = keras.optimizers.SGD(lr=learning_rate, momentum=momentum, | |
clipnorm=self.config.GRADIENT_CLIP_NORM) | |
# Add Losses | |
# First, clear previously set losses to avoid duplication | |
self.keras_model._losses = [] | |
self.keras_model._per_input_losses = {} | |
loss_names = ["rpn_class_loss", "rpn_bbox_loss", | |
"mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] | |
for name in loss_names: | |
layer = self.keras_model.get_layer(name) | |
if layer.output in self.keras_model.losses: | |
continue | |
self.keras_model.add_loss( | |
tf.reduce_mean(layer.output, keep_dims=True)) | |
# Add L2 Regularization | |
# Skip gamma and beta weights of batch normalization layers. | |
reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) | |
for w in self.keras_model.trainable_weights | |
if 'gamma' not in w.name and 'beta' not in w.name] | |
self.keras_model.add_loss(tf.add_n(reg_losses)) | |
# Compile | |
self.keras_model.compile(optimizer=optimizer, loss=[ | |
None] * len(self.keras_model.outputs)) | |
# Add metrics for losses | |
for name in loss_names: | |
if name in self.keras_model.metrics_names: | |
continue | |
layer = self.keras_model.get_layer(name) | |
self.keras_model.metrics_names.append(name) | |
self.keras_model.metrics_tensors.append(tf.reduce_mean( | |
layer.output, keep_dims=True)) | |
def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): | |
"""Sets model layers as trainable if their names match | |
the given regular expression. | |
""" | |
# Print message on the first call (but not on recursive calls) | |
if verbose > 0 and keras_model is None: | |
log("Selecting layers to train") | |
keras_model = keras_model or self.keras_model | |
# In multi-GPU training, we wrap the model. Get layers | |
# of the inner model because they have the weights. | |
layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ | |
else keras_model.layers | |
for layer in layers: | |
# Is the layer a model? | |
if layer.__class__.__name__ == 'Model': | |
print("In model: ", layer.name) | |
self.set_trainable( | |
layer_regex, keras_model=layer, indent=indent + 4) | |
continue | |
if not layer.weights: | |
continue | |
# Is it trainable? | |
trainable = bool(re.fullmatch(layer_regex, layer.name)) | |
# Update layer. If layer is a container, update inner layer. | |
if layer.__class__.__name__ == 'TimeDistributed': | |
layer.layer.trainable = trainable | |
else: | |
layer.trainable = trainable | |
# Print trainble layer names | |
if trainable and verbose > 0: | |
log("{}{:20} ({})".format(" " * indent, layer.name, | |
layer.__class__.__name__)) | |
def set_log_dir(self, model_path=None): | |
"""Sets the model log directory and epoch counter. | |
model_path: If None, or a format different from what this code uses | |
then set a new log directory and start epochs from 0. Otherwise, | |
extract the log directory and the epoch counter from the file | |
name. | |
""" | |
# Set date and epoch counter as if starting a new model | |
self.epoch = 0 | |
now = datetime.datetime.now() | |
# If we have a model path with date and epochs use them | |
if model_path: | |
# Continue from we left of. Get epoch and date from the file name | |
# A sample model path might look like: | |
# /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 | |
regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/mask\_rcnn\_\w+(\d{4})\.h5" | |
m = re.match(regex, model_path) | |
if m: | |
now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)), | |
int(m.group(4)), int(m.group(5))) | |
# Epoch number in file is 1-based, and in Keras code it's 0-based. | |
# So, adjust for that then increment by one to start from the next epoch | |
self.epoch = int(m.group(6)) - 1 + 1 | |
# Directory for training logs | |
self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format( | |
self.config.NAME.lower(), now)) | |
# Path to save after each epoch. Include placeholders that get filled by Keras. | |
self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format( | |
self.config.NAME.lower())) | |
self.checkpoint_path = self.checkpoint_path.replace( | |
"*epoch*", "{epoch:04d}") | |
def train(self, train_dataset, val_dataset, learning_rate, epochs, layers, | |
augmentation=None): | |
"""Train the model. | |
train_dataset, val_dataset: Training and validation Dataset objects. | |
learning_rate: The learning rate to train with | |
epochs: Number of training epochs. Note that previous training epochs | |
are considered to be done alreay, so this actually determines | |
the epochs to train in total rather than in this particaular | |
call. | |
layers: Allows selecting wich layers to train. It can be: | |
- A regular expression to match layer names to train | |
- One of these predefined values: | |
heaads: The RPN, classifier and mask heads of the network | |
all: All the layers | |
3+: Train Resnet stage 3 and up | |
4+: Train Resnet stage 4 and up | |
5+: Train Resnet stage 5 and up | |
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) | |
augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) | |
flips images right/left 50% of the time. You can pass complex | |
augmentations as well. This augmentation applies 50% of the | |
time, and when it does it flips images right/left half the time | |
and adds a Gausssian blur with a random sigma in range 0 to 5. | |
augmentation = imgaug.augmenters.Sometimes(0.5, [ | |
imgaug.augmenters.Fliplr(0.5), | |
imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0)) | |
]) | |
""" | |
assert self.mode == "training", "Create model in training mode." | |
# Pre-defined layer regular expressions | |
layer_regex = { | |
# all layers but the backbone | |
"heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
# From a specific Resnet stage and up | |
"3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
"4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
"5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
# All layers | |
"all": ".*", | |
} | |
if layers in layer_regex.keys(): | |
layers = layer_regex[layers] | |
# Data generators | |
train_generator = data_generator(train_dataset, self.config, shuffle=True, | |
augmentation=augmentation, | |
batch_size=self.config.BATCH_SIZE) | |
val_generator = data_generator(val_dataset, self.config, shuffle=True, | |
batch_size=self.config.BATCH_SIZE) | |
# Callbacks | |
callbacks = [ | |
keras.callbacks.TensorBoard(log_dir=self.log_dir, | |
histogram_freq=0, write_graph=True, write_images=False), | |
keras.callbacks.ModelCheckpoint(self.checkpoint_path, | |
verbose=0, save_weights_only=True), | |
] | |
# Train | |
log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) | |
log("Checkpoint Path: {}".format(self.checkpoint_path)) | |
self.set_trainable(layers) | |
self.compile(learning_rate, self.config.LEARNING_MOMENTUM) | |
# Work-around for Windows: Keras fails on Windows when using | |
# multiprocessing workers. See discussion here: | |
# https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 | |
if os.name is 'nt': | |
workers = 0 | |
else: | |
workers = multiprocessing.cpu_count() | |
self.keras_model.fit_generator( | |
train_generator, | |
initial_epoch=self.epoch, | |
epochs=epochs, | |
steps_per_epoch=self.config.STEPS_PER_EPOCH, | |
callbacks=callbacks, | |
validation_data=val_generator, | |
validation_steps=self.config.VALIDATION_STEPS, | |
max_queue_size=100, | |
workers=workers, | |
use_multiprocessing=True, | |
) | |
self.epoch = max(self.epoch, epochs) | |
def mold_inputs(self, images): | |
"""Takes a list of images and modifies them to the format expected | |
as an input to the neural network. | |
images: List of image matricies [height,width,depth]. Images can have | |
different sizes. | |
Returns 3 Numpy matricies: | |
molded_images: [N, h, w, 3]. Images resized and normalized. | |
image_metas: [N, length of meta data]. Details about each image. | |
windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the | |
original image (padding excluded). | |
""" | |
molded_images = [] | |
image_metas = [] | |
windows = [] | |
for image in images: | |
# Resize image | |
# TODO: move resizing to mold_image() | |
molded_image, window, scale, padding = utils.resize_image( | |
image, | |
min_dim=self.config.IMAGE_MIN_DIM, | |
max_dim=self.config.IMAGE_MAX_DIM, | |
mode=self.config.IMAGE_RESIZE_MODE) | |
molded_image = mold_image(molded_image, self.config) | |
# Build image_meta | |
image_meta = compose_image_meta( | |
0, image.shape, molded_image.shape, window, scale, | |
np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) | |
# Append | |
molded_images.append(molded_image) | |
windows.append(window) | |
image_metas.append(image_meta) | |
# Pack into arrays | |
molded_images = np.stack(molded_images) | |
image_metas = np.stack(image_metas) | |
windows = np.stack(windows) | |
return molded_images, image_metas, windows | |
def unmold_detections(self, detections, mrcnn_mask, original_image_shape, | |
image_shape, window): | |
"""Reformats the detections of one image from the format of the neural | |
network output to a format suitable for use in the rest of the | |
application. | |
detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates | |
mrcnn_mask: [N, height, width, num_classes] | |
original_image_shape: [H, W, C] Original image shape before resizing | |
image_shape: [H, W, C] Shape of the image after resizing and padding | |
window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real | |
image is excluding the padding. | |
Returns: | |
boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels | |
class_ids: [N] Integer class IDs for each bounding box | |
scores: [N] Float probability scores of the class_id | |
masks: [height, width, num_instances] Instance masks | |
""" | |
# How many detections do we have? | |
# Detections array is padded with zeros. Find the first class_id == 0. | |
zero_ix = np.where(detections[:, 4] == 0)[0] | |
N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] | |
# Extract boxes, class_ids, scores, and class-specific masks | |
boxes = detections[:N, :4] | |
class_ids = detections[:N, 4].astype(np.int32) | |
scores = detections[:N, 5] | |
masks = mrcnn_mask[np.arange(N), :, :, class_ids] | |
# Translate normalized coordinates in the resized image to pixel | |
# coordinates in the original image before resizing | |
window = utils.norm_boxes(window, image_shape[:2]) | |
wy1, wx1, wy2, wx2 = window | |
shift = np.array([wy1, wx1, wy1, wx1]) | |
wh = wy2 - wy1 # window height | |
ww = wx2 - wx1 # window width | |
scale = np.array([wh, ww, wh, ww]) | |
# Convert boxes to normalized coordinates on the window | |
boxes = np.divide(boxes - shift, scale) | |
# Convert boxes to pixel coordinates on the original image | |
boxes = utils.denorm_boxes(boxes, original_image_shape[:2]) | |
# Filter out detections with zero area. Happens in early training when | |
# network weights are still random | |
exclude_ix = np.where( | |
(boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] | |
if exclude_ix.shape[0] > 0: | |
boxes = np.delete(boxes, exclude_ix, axis=0) | |
class_ids = np.delete(class_ids, exclude_ix, axis=0) | |
scores = np.delete(scores, exclude_ix, axis=0) | |
masks = np.delete(masks, exclude_ix, axis=0) | |
N = class_ids.shape[0] | |
# Resize masks to original image size and set boundary threshold. | |
full_masks = [] | |
for i in range(N): | |
# Convert neural network mask to full size mask | |
full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) | |
full_masks.append(full_mask) | |
full_masks = np.stack(full_masks, axis=-1)\ | |
if full_masks else np.empty((0,) + masks.shape[1:3]) | |
return boxes, class_ids, scores, full_masks | |
def detect(self, images, verbose=0): | |
"""Runs the detection pipeline. | |
images: List of images, potentially of different sizes. | |
Returns a list of dicts, one dict per image. The dict contains: | |
rois: [N, (y1, x1, y2, x2)] detection bounding boxes | |
class_ids: [N] int class IDs | |
scores: [N] float probability scores for the class IDs | |
masks: [H, W, N] instance binary masks | |
""" | |
assert self.mode == "inference", "Create model in inference mode." | |
assert len( | |
images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" | |
if verbose: | |
log("Processing {} images".format(len(images))) | |
for image in images: | |
log("image", image) | |
# Mold inputs to format expected by the neural network | |
molded_images, image_metas, windows = self.mold_inputs(images) | |
# Validate image sizes | |
# All images in a batch MUST be of the same size | |
image_shape = molded_images[0].shape | |
for g in molded_images[1:]: | |
assert g.shape == image_shape,\ | |
"After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes." | |
# Anchors | |
anchors = self.get_anchors(image_shape) | |
# Duplicate across the batch dimension because Keras requires it | |
# TODO: can this be optimized to avoid duplicating the anchors? | |
anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) | |
if verbose: | |
log("molded_images", molded_images) | |
log("image_metas", image_metas) | |
log("anchors", anchors) | |
# Run object detection | |
detections, _, _, mrcnn_mask, _, _, _ =\ | |
self.keras_model.predict([molded_images, image_metas, anchors], verbose=0) | |
# Process detections | |
results = [] | |
for i, image in enumerate(images): | |
final_rois, final_class_ids, final_scores, final_masks =\ | |
self.unmold_detections(detections[i], mrcnn_mask[i], | |
image.shape, molded_images[i].shape, | |
windows[i]) | |
results.append({ | |
"rois": final_rois, | |
"class_ids": final_class_ids, | |
"scores": final_scores, | |
"masks": final_masks, | |
}) | |
return results | |
def get_anchors(self, image_shape): | |
"""Returns anchor pyramid for the given image size.""" | |
backbone_shapes = compute_backbone_shapes(self.config, image_shape) | |
# Cache anchors and reuse if image shape is the same | |
if not hasattr(self, "_anchor_cache"): | |
self._anchor_cache = {} | |
if not tuple(image_shape) in self._anchor_cache: | |
# Generate Anchors | |
a = utils.generate_pyramid_anchors( | |
self.config.RPN_ANCHOR_SCALES, | |
self.config.RPN_ANCHOR_RATIOS, | |
backbone_shapes, | |
self.config.BACKBONE_STRIDES, | |
self.config.RPN_ANCHOR_STRIDE) | |
# Keep a copy of the latest anchors in pixel coordinates because | |
# it's used in inspect_model notebooks. | |
# TODO: Remove this after the notebook are refactored to not use it | |
self.anchors = a | |
# Normalize coordinates | |
self._anchor_cache[tuple(image_shape)] = utils.norm_boxes(a, image_shape[:2]) | |
return self._anchor_cache[tuple(image_shape)] | |
def ancestor(self, tensor, name, checked=None): | |
"""Finds the ancestor of a TF tensor in the computation graph. | |
tensor: TensorFlow symbolic tensor. | |
name: Name of ancestor tensor to find | |
checked: For internal use. A list of tensors that were already | |
searched to avoid loops in traversing the graph. | |
""" | |
checked = checked if checked is not None else [] | |
# Put a limit on how deep we go to avoid very long loops | |
if len(checked) > 500: | |
return None | |
# Convert name to a regex and allow matching a number prefix | |
# because Keras adds them automatically | |
if isinstance(name, str): | |
name = re.compile(name.replace("/", r"(\_\d+)*/")) | |
parents = tensor.op.inputs | |
for p in parents: | |
if p in checked: | |
continue | |
if bool(re.fullmatch(name, p.name)): | |
return p | |
checked.append(p) | |
a = self.ancestor(p, name, checked) | |
if a is not None: | |
return a | |
return None | |
def find_trainable_layer(self, layer): | |
"""If a layer is encapsulated by another layer, this function | |
digs through the encapsulation and returns the layer that holds | |
the weights. | |
""" | |
if layer.__class__.__name__ == 'TimeDistributed': | |
return self.find_trainable_layer(layer.layer) | |
return layer | |
def get_trainable_layers(self): | |
"""Returns a list of layers that have weights.""" | |
layers = [] | |
# Loop through all layers | |
for l in self.keras_model.layers: | |
# If layer is a wrapper, find inner trainable layer | |
l = self.find_trainable_layer(l) | |
# Include layer if it has weights | |
if l.get_weights(): | |
layers.append(l) | |
return layers | |
def run_graph(self, images, outputs): | |
"""Runs a sub-set of the computation graph that computes the given | |
outputs. | |
outputs: List of tuples (name, tensor) to compute. The tensors are | |
symbolic TensorFlow tensors and the names are for easy tracking. | |
Returns an ordered dict of results. Keys are the names received in the | |
input and values are Numpy arrays. | |
""" | |
model = self.keras_model | |
# Organize desired outputs into an ordered dict | |
outputs = OrderedDict(outputs) | |
for o in outputs.values(): | |
assert o is not None | |
# Build a Keras function to run parts of the computation graph | |
inputs = model.inputs | |
if model.uses_learning_phase and not isinstance(K.learning_phase(), int): | |
inputs += [K.learning_phase()] | |
kf = K.function(model.inputs, list(outputs.values())) | |
# Prepare inputs | |
molded_images, image_metas, windows = self.mold_inputs(images) | |
image_shape = molded_images[0].shape | |
# TODO: support training mode? | |
# if TEST_MODE == "training": | |
# model_in = [molded_images, image_metas, | |
# target_rpn_match, target_rpn_bbox, | |
# gt_boxes, gt_masks] | |
# if not config.USE_RPN_ROIS: | |
# model_in.append(target_rois) | |
# if model.uses_learning_phase and not isinstance(K.learning_phase(), int): | |
# model_in.append(1.) | |
# outputs_np = kf(model_in) | |
# else: | |
# Anchors | |
anchors = self.get_anchors(image_shape) | |
# Duplicate across the batch dimension because Keras requires it | |
# TODO: can this be optimized to avoid duplicating the anchors? | |
anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) | |
model_in = [molded_images, image_metas, anchors] | |
# Run inference | |
if model.uses_learning_phase and not isinstance(K.learning_phase(), int): | |
model_in.append(0.) | |
outputs_np = kf(model_in) | |
# Pack the generated Numpy arrays into a a dict and log the results. | |
outputs_np = OrderedDict([(k, v) | |
for k, v in zip(outputs.keys(), outputs_np)]) | |
for k, v in outputs_np.items(): | |
log(k, v) | |
return outputs_np | |
############################################################ | |
# Data Formatting | |
############################################################ | |
def compose_image_meta(image_id, original_image_shape, image_shape, | |
window, scale, active_class_ids): | |
"""Takes attributes of an image and puts them in one 1D array. | |
image_id: An int ID of the image. Useful for debugging. | |
original_image_shape: [H, W, C] before resizing or padding. | |
image_shape: [H, W, C] after resizing and padding | |
window: (y1, x1, y2, x2) in pixels. The area of the image where the real | |
image is (excluding the padding) | |
scale: The scaling factor applied to the original image (float32) | |
active_class_ids: List of class_ids available in the dataset from which | |
the image came. Useful if training on images from multiple datasets | |
where not all classes are present in all datasets. | |
""" | |
meta = np.array( | |
[image_id] + # size=1 | |
list(original_image_shape) + # size=3 | |
list(image_shape) + # size=3 | |
list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates | |
[scale] + # size=1 | |
list(active_class_ids) # size=num_classes | |
) | |
return meta | |
def parse_image_meta(meta): | |
"""Parses an array that contains image attributes to its components. | |
See compose_image_meta() for more details. | |
meta: [batch, meta length] where meta length depends on NUM_CLASSES | |
Returns a dict of the parsed values. | |
""" | |
image_id = meta[:, 0] | |
original_image_shape = meta[:, 1:4] | |
image_shape = meta[:, 4:7] | |
window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels | |
scale = meta[:, 11] | |
active_class_ids = meta[:, 12:] | |
return { | |
"image_id": image_id.astype(np.int32), | |
"original_image_shape": original_image_shape.astype(np.int32), | |
"image_shape": image_shape.astype(np.int32), | |
"window": window.astype(np.int32), | |
"scale": scale.astype(np.float32), | |
"active_class_ids": active_class_ids.astype(np.int32), | |
} | |
def parse_image_meta_graph(meta): | |
"""Parses a tensor that contains image attributes to its components. | |
See compose_image_meta() for more details. | |
meta: [batch, meta length] where meta length depends on NUM_CLASSES | |
Returns a dict of the parsed tensors. | |
""" | |
image_id = meta[:, 0] | |
original_image_shape = meta[:, 1:4] | |
image_shape = meta[:, 4:7] | |
window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels | |
scale = meta[:, 11] | |
active_class_ids = meta[:, 12:] | |
return { | |
"image_id": image_id, | |
"original_image_shape": original_image_shape, | |
"image_shape": image_shape, | |
"window": window, | |
"scale": scale, | |
"active_class_ids": active_class_ids, | |
} | |
def mold_image(images, config): | |
"""Expects an RGB image (or array of images) and subtraces | |
the mean pixel and converts it to float. Expects image | |
colors in RGB order. | |
""" | |
return images.astype(np.float32) - config.MEAN_PIXEL | |
def unmold_image(normalized_images, config): | |
"""Takes a image normalized with mold() and returns the original.""" | |
return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) | |
############################################################ | |
# Miscellenous Graph Functions | |
############################################################ | |
def trim_zeros_graph(boxes, name=None): | |
"""Often boxes are represented with matricies of shape [N, 4] and | |
are padded with zeros. This removes zero boxes. | |
boxes: [N, 4] matrix of boxes. | |
non_zeros: [N] a 1D boolean mask identifying the rows to keep | |
""" | |
non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) | |
boxes = tf.boolean_mask(boxes, non_zeros, name=name) | |
return boxes, non_zeros | |
def batch_pack_graph(x, counts, num_rows): | |
"""Picks different number of values from each row | |
in x depending on the values in counts. | |
""" | |
outputs = [] | |
for i in range(num_rows): | |
outputs.append(x[i, :counts[i]]) | |
return tf.concat(outputs, axis=0) | |
def norm_boxes_graph(boxes, shape): | |
"""Converts boxes from pixel coordinates to normalized coordinates. | |
boxes: [..., (y1, x1, y2, x2)] in pixel coordinates | |
shape: [..., (height, width)] in pixels | |
Note: In pixel coordinates (y2, x2) is outside the box. But in normalized | |
coordinates it's inside the box. | |
Returns: | |
[..., (y1, x1, y2, x2)] in normalized coordinates | |
""" | |
h, w = tf.split(tf.cast(shape, tf.float32), 2) | |
scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) | |
shift = tf.constant([0., 0., 1., 1.]) | |
return tf.divide(boxes - shift, scale) | |
def denorm_boxes_graph(boxes, shape): | |
"""Converts boxes from normalized coordinates to pixel coordinates. | |
boxes: [..., (y1, x1, y2, x2)] in normalized coordinates | |
shape: [..., (height, width)] in pixels | |
Note: In pixel coordinates (y2, x2) is outside the box. But in normalized | |
coordinates it's inside the box. | |
Returns: | |
[..., (y1, x1, y2, x2)] in pixel coordinates | |
""" | |
h, w = tf.split(tf.cast(shape, tf.float32), 2) | |
scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) | |
shift = tf.constant([0., 0., 1., 1.]) | |
return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32) | |