Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,141 @@
|
|
1 |
|
2 |
import os
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
print('OPENAI_API_KEY' in os.environ)
|
8 |
-
print('HF_Key' in os.environ)
|
9 |
-
|
10 |
-
print(os.environ['OPENAI_API_KEY'])
|
11 |
-
print(os.environ['HF_Key'])
|
12 |
|
13 |
import openai
|
14 |
import json
|
15 |
|
16 |
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
|
22 |
-
#
|
23 |
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
|
40 |
-
#
|
41 |
-
#
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
|
121 |
-
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
#
|
136 |
|
137 |
|
138 |
|
139 |
-
#
|
140 |
-
#
|
141 |
-
#
|
142 |
|
143 |
-
#
|
144 |
-
#
|
145 |
|
146 |
-
|
147 |
-
|
|
|
1 |
|
2 |
import os
|
3 |
|
4 |
+
open_ai_key= os.environ['OPENAI_API_KEY']
|
5 |
+
hf_key = os.environ['HF_KEY']
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import openai
|
8 |
import json
|
9 |
|
10 |
|
11 |
|
12 |
+
from llama_index import GPTSimpleVectorIndex, LLMPredictor, PromptHelper, ServiceContext, QuestionAnswerPrompt
|
13 |
+
from langchain import OpenAI
|
14 |
|
15 |
|
16 |
+
# handling data on space
|
17 |
|
18 |
+
from huggingface_hub import HfFileSystem
|
19 |
+
fs = HfFileSystem(token=hf_key)
|
20 |
|
21 |
+
text_list = fs.ls("datasets/GoChat/Gochat247_Data/Data", detail=False)
|
22 |
|
23 |
+
data = fs.read_text(text_list[0])
|
24 |
|
25 |
+
from llama_index import Document
|
26 |
+
doc = Document(data)
|
27 |
+
docs = []
|
28 |
+
docs.append(doc)
|
29 |
|
30 |
|
31 |
+
# define LLM
|
32 |
+
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003"))
|
33 |
|
34 |
+
# define prompt helper
|
35 |
+
# set maximum input size
|
36 |
+
max_input_size = 4096
|
37 |
+
# set number of output tokens
|
38 |
+
num_output = 256
|
39 |
+
# set maximum chunk overlap
|
40 |
+
max_chunk_overlap = 20
|
41 |
+
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
42 |
|
43 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
44 |
|
45 |
+
index = GPTSimpleVectorIndex.from_documents(docs)
|
46 |
|
47 |
|
48 |
+
## Define Chat BOT Class to generate Response , handle chat history,
|
49 |
+
class Chatbot:
|
50 |
|
51 |
+
def __init__(self, index):
|
52 |
+
self.index = index
|
53 |
+
openai.api_key = open_ai_key
|
54 |
+
self.chat_history = []
|
55 |
|
56 |
+
QA_PROMPT_TMPL = (
|
57 |
+
"Answer without 'Answer:' word."
|
58 |
+
"you are in a converation with Gochat247's web site visitor\n"
|
59 |
+
"user got into this conversation to learn more about Gochat247"
|
60 |
+
"you will act like Gochat247 Virtual AI BOT. Be friendy and welcoming\n"
|
61 |
+
"you will be friendy and welcoming\n"
|
62 |
+
"The Context of the conversstion should be always limited to learing more about Gochat247 as a company providing Business Process Outosuricng and AI Customer expeeince soltuion /n"
|
63 |
+
"The below is the previous chat with the user\n"
|
64 |
+
"---------------------\n"
|
65 |
+
"{context_str}"
|
66 |
+
"\n---------------------\n"
|
67 |
+
"Given the context information and the chat history, and not prior knowledge\n"
|
68 |
+
"\nanswer the question : {query_str}\n"
|
69 |
+
"\n it is ok if you don not know the answer. and ask for infomration \n"
|
70 |
+
"Please provide a brief and concise but friendly response.")
|
71 |
|
72 |
+
self.QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
|
73 |
|
74 |
|
75 |
+
def generate_response(self, user_input):
|
76 |
|
77 |
+
prompt = "\n".join([f"{message['role']}: {message['content']}" for message in self.chat_history[-5:]])
|
78 |
+
prompt += f"\nUser: {user_input}"
|
79 |
+
self.QA_PROMPT.context_str = prompt
|
80 |
+
response = index.query(user_input, text_qa_template=self.QA_PROMPT)
|
81 |
+
|
82 |
+
message = {"role": "assistant", "content": response.response}
|
83 |
+
self.chat_history.append({"role": "user", "content": user_input})
|
84 |
+
self.chat_history.append(message)
|
85 |
+
return message
|
86 |
|
87 |
+
def load_chat_history(self, filename):
|
88 |
+
try:
|
89 |
+
with open(filename, 'r') as f:
|
90 |
+
self.chat_history = json.load(f)
|
91 |
+
except FileNotFoundError:
|
92 |
+
pass
|
93 |
+
|
94 |
+
def save_chat_history(self, filename):
|
95 |
+
with open(filename, 'w') as f:
|
96 |
+
json.dump(self.chat_history, f)
|
97 |
|
98 |
+
## Define Chat BOT Class to generate Response , handle chat history,
|
99 |
|
100 |
+
bot = Chatbot(index=index)
|
101 |
|
102 |
+
import webbrowser
|
103 |
|
104 |
+
import gradio as gr
|
105 |
+
import time
|
106 |
|
107 |
+
with gr.Blocks(theme='SebastianBravo/simci_css') as demo:
|
108 |
+
with gr.Column(scale=4):
|
109 |
+
title = 'GoChat247 AI BOT'
|
110 |
+
chatbot = gr.Chatbot(label='GoChat247 AI BOT')
|
111 |
+
msg = gr.Textbox()
|
112 |
+
clear = gr.Button("Clear")
|
113 |
|
114 |
|
115 |
+
def user(user_message, history):
|
116 |
+
return "", history + [[user_message, None]]
|
117 |
|
118 |
+
def agent(history):
|
119 |
+
last_user_message = history[-1][0]
|
120 |
+
agent_message = bot.generate_response(last_user_message)
|
121 |
+
history[-1][1] = agent_message ["content"]
|
122 |
+
time.sleep(1)
|
123 |
+
return history
|
124 |
|
125 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(agent, chatbot, chatbot)
|
126 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
127 |
+
print(webbrowser.get())
|
128 |
|
129 |
+
# handling dark_theme
|
130 |
|
131 |
|
132 |
|
133 |
+
# def apply_dark_theme(url):
|
134 |
+
# if not url.endswith('?__theme=dark'):
|
135 |
+
# webbrowser.open_new(url + '?__theme=dark')
|
136 |
|
137 |
+
# gradioURL = 'http://localhost:7860/'
|
138 |
+
# apply_dark_theme(gradioURL)
|
139 |
|
140 |
+
if __name__ == "__main__":
|
141 |
+
demo.launch()
|