Spaces:
Paused
Paused
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# import logging
|
3 |
+
import os
|
4 |
+
os.environ['OPENAI_API_KEY'] = "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"
|
5 |
+
import openai
|
6 |
+
import json
|
7 |
+
|
8 |
+
|
9 |
+
# create a logger with a file handler
|
10 |
+
# logger = logging.getLogger("chatbot_logger")
|
11 |
+
# handler = logging.FileHandler("chatbot.log")
|
12 |
+
# logger.addHandler(handler)
|
13 |
+
# logger.setLevel(logging.INFO)
|
14 |
+
|
15 |
+
from llama_index import SimpleDirectoryReader, GPTSimpleVectorIndex, LLMPredictor, PromptHelper, ServiceContext, QuestionAnswerPrompt
|
16 |
+
from langchain import OpenAI
|
17 |
+
|
18 |
+
|
19 |
+
documents = SimpleDirectoryReader('https://huggingface.co/spaces/waelabou/Gochat247Demo/tree/main/Data_Gochat').load_data()
|
20 |
+
|
21 |
+
|
22 |
+
# Setup your LLM
|
23 |
+
|
24 |
+
|
25 |
+
# define LLM
|
26 |
+
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003"))
|
27 |
+
|
28 |
+
# define prompt helper
|
29 |
+
# set maximum input size
|
30 |
+
max_input_size = 4096
|
31 |
+
# set number of output tokens
|
32 |
+
num_output = 256
|
33 |
+
# set maximum chunk overlap
|
34 |
+
max_chunk_overlap = 20
|
35 |
+
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
|
36 |
+
|
37 |
+
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
|
38 |
+
|
39 |
+
|
40 |
+
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
|
41 |
+
|
42 |
+
|
43 |
+
## Define Chat BOT Class to generate Response , handle chat history,
|
44 |
+
class Chatbot:
|
45 |
+
|
46 |
+
def __init__(self, api_key, index):
|
47 |
+
self.index = index
|
48 |
+
openai.api_key = api_key
|
49 |
+
self.chat_history = []
|
50 |
+
|
51 |
+
QA_PROMPT_TMPL = (
|
52 |
+
"Answer without 'Answer:' word please."
|
53 |
+
"you are in a converation with Gochat247's web site visitor\n"
|
54 |
+
"user got into this conversation to learn more about Gochat247"
|
55 |
+
"you will act like Gochat247 Virtual AI BOT. Be friendy and welcoming\n"
|
56 |
+
# "you will be friendy and welcoming\n"
|
57 |
+
"The Context of the conversstion should be always limited to learing more about Gochat247 as a company providing Business Process Outosuricng and AI Customer expeeince soltuion /n"
|
58 |
+
"The below is the previous chat with the user\n"
|
59 |
+
"---------------------\n"
|
60 |
+
"{context_str}"
|
61 |
+
"\n---------------------\n"
|
62 |
+
"Given the context information and the chat history, and not prior knowledge\n"
|
63 |
+
"\nanswer the question : {query_str}\n"
|
64 |
+
"\n it is ok if you don not know the answer. and ask for infomration \n"
|
65 |
+
"Please provide a brief and concise but friendly response."
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
)
|
70 |
+
|
71 |
+
self.QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
|
72 |
+
|
73 |
+
|
74 |
+
def generate_response(self, user_input):
|
75 |
+
|
76 |
+
prompt = "\n".join([f"{message['role']}: {message['content']}" for message in self.chat_history[-5:]])
|
77 |
+
prompt += f"\nUser: {user_input}"
|
78 |
+
self.QA_PROMPT.context_str = prompt
|
79 |
+
response = index.query(user_input, text_qa_template=self.QA_PROMPT
|
80 |
+
)
|
81 |
+
|
82 |
+
message = {"role": "assistant", "content": response.response}
|
83 |
+
self.chat_history.append({"role": "user", "content": user_input})
|
84 |
+
self.chat_history.append(message)
|
85 |
+
return message
|
86 |
+
|
87 |
+
def load_chat_history(self, filename):
|
88 |
+
try:
|
89 |
+
with open(filename, 'r') as f:
|
90 |
+
self.chat_history = json.load(f)
|
91 |
+
except FileNotFoundError:
|
92 |
+
pass
|
93 |
+
|
94 |
+
def save_chat_history(self, filename):
|
95 |
+
with open(filename, 'w') as f:
|
96 |
+
json.dump(self.chat_history, f)
|
97 |
+
|
98 |
+
|
99 |
+
## Define Chat BOT Class to generate Response , handle chat history,
|
100 |
+
|
101 |
+
bot = Chatbot("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", index=index)
|
102 |
+
|
103 |
+
|
104 |
+
import gradio as gr
|
105 |
+
import time
|
106 |
+
|
107 |
+
|
108 |
+
with gr.Blocks() as demo:
|
109 |
+
chatbot = gr.Chatbot(label="GoChat247_Demo")
|
110 |
+
msg = gr.Textbox()
|
111 |
+
clear = gr.Button("Clear")
|
112 |
+
|
113 |
+
|
114 |
+
def user(user_message, history):
|
115 |
+
return "", history + [[user_message, None]]
|
116 |
+
|
117 |
+
def agent(history):
|
118 |
+
last_user_message = history[-1][0]
|
119 |
+
agent_message = bot.generate_response(last_user_message)
|
120 |
+
history[-1][1] = agent_message ["content"]
|
121 |
+
time.sleep(1)
|
122 |
+
return history
|
123 |
+
|
124 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
125 |
+
agent, chatbot, chatbot
|
126 |
+
)
|
127 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
demo.launch(share=True)
|