GoChat247Demo / app.py
Ahmed-14's picture
Update app.py
196a5f1
raw
history blame
4.1 kB
import os
openai_key= os.environ['OPENAI_API_KEY']
hf_key = os.environ['HF_KEY']
import openai
import json
from llama_index import GPTSimpleVectorIndex, LLMPredictor, PromptHelper, ServiceContext, QuestionAnswerPrompt
from langchain import OpenAI
# handling data on space
from huggingface_hub import HfFileSystem
fs = HfFileSystem(token=hf_key)
text_list = fs.ls("datasets/GoChat/Gochat247_Data/Data", detail=False)
data = ''.join(fs.read_text(i, encoding='ISO-8859-1') for i in text_list)
from llama_index import Document
doc = Document(data)
docs = []
docs.append(doc)
# define LLM
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-davinci-003"))
# define prompt helper
# set maximum input size
max_input_size = 4096
# set number of output tokens
num_output = 256
# set maximum chunk overlap
max_chunk_overlap = 20
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
index = GPTSimpleVectorIndex.from_documents(docs)
## Define Chat BOT Class to generate Response , handle chat history,
class Chatbot:
def __init__(self, index):
self.index = index
openai.api_key = openai_key
self.chat_history = []
QA_PROMPT_TMPL = (
"you are in a converation with Gochat247's web site visitor\n"
"user got into this conversation to learn more about Gochat247"
"you will act like Gochat247 Virtual AI BOT. Be friendy and welcoming\n"
"The Context of the conversstion should be always limited to learing more about Gochat247 as a company providing Business Process Outosuricng and AI Customer expeeince soltuion /n"
"The below is the previous chat with the user\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Given the context information and the chat history, and not prior knowledge\n"
"\nanswer the question : {query_str}\n"
"\n it is ok if you don not know the answer. and ask for infomration \n"
"Please provide a brief and concise but friendly response.")
self.QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
def generate_response(self, user_input):
prompt = "\n".join([f"{message['role']}: {message['content']}" for message in self.chat_history[-5:]])
prompt += f"\nUser: {user_input}"
self.QA_PROMPT.context_str = prompt
response = index.query(user_input, text_qa_template=self.QA_PROMPT)
message = {"role": "assistant", "content": response.response}
self.chat_history.append({"role": "user", "content": user_input})
self.chat_history.append(message)
return message
def load_chat_history(self, filename):
try:
with open(filename, 'r') as f:
self.chat_history = json.load(f)
except FileNotFoundError:
pass
def save_chat_history(self, filename):
with open(filename, 'w') as f:
json.dump(self.chat_history, f)
## Define Chat BOT Class to generate Response , handle chat history,
bot = Chatbot(index=index)
import gradio as gr
import time
with gr.Blocks(theme='SebastianBravo/simci_css') as demo:
with gr.Column(variant='panel'):
title = 'GoChat247 AI BOT'
chatbot = gr.Chatbot(label='GoChat247 AI BOT')
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def agent(history):
last_user_message = history[-1][0]
agent_message = bot.generate_response(last_user_message)
history[-1][1] = agent_message ["content"]
time.sleep(1)
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(agent, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()