Spaces:
Runtime error
Runtime error
# 借鉴自同目录下的bridge_chatgpt.py | |
""" | |
该文件中主要包含三个函数 | |
不具备多线程能力的函数: | |
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
具备多线程调用能力的函数 | |
2. predict_no_ui_long_connection:支持多线程 | |
""" | |
import json | |
import time | |
import gradio as gr | |
import logging | |
import traceback | |
import requests | |
import importlib | |
import random | |
# config_private.py放自己的秘密如API和代理网址 | |
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 | |
from toolbox import get_conf, update_ui, trimmed_format_exc, is_the_upload_folder, read_one_api_model_name | |
proxies, TIMEOUT_SECONDS, MAX_RETRY, YIMODEL_API_KEY = \ | |
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'YIMODEL_API_KEY') | |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ | |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' | |
def get_full_error(chunk, stream_response): | |
""" | |
获取完整的从Openai返回的报错 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def decode_chunk(chunk): | |
# 提前读取一些信息(用于判断异常) | |
chunk_decoded = chunk.decode() | |
chunkjson = None | |
is_last_chunk = False | |
try: | |
chunkjson = json.loads(chunk_decoded[6:]) | |
is_last_chunk = chunkjson.get("lastOne", False) | |
except: | |
pass | |
return chunk_decoded, chunkjson, is_last_chunk | |
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): | |
""" | |
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 | |
inputs: | |
是本次问询的输入 | |
sys_prompt: | |
系统静默prompt | |
llm_kwargs: | |
chatGPT的内部调优参数 | |
history: | |
是之前的对话列表 | |
observe_window = None: | |
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 | |
""" | |
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 | |
if inputs == "": inputs = "空空如也的输入栏" | |
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=False | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
response = requests.post(endpoint, headers=headers, proxies=proxies, | |
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break | |
except requests.exceptions.ReadTimeout as e: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
stream_response = response.iter_lines() | |
result = '' | |
is_head_of_the_stream = True | |
while True: | |
try: chunk = next(stream_response) | |
except StopIteration: | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk) | |
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded): | |
# 数据流的第一帧不携带content | |
is_head_of_the_stream = False; continue | |
if chunk: | |
try: | |
if is_last_chunk: | |
# 判定为数据流的结束,gpt_replying_buffer也写完了 | |
logging.info(f'[response] {result}') | |
break | |
result += chunkjson['choices'][0]["delta"]["content"] | |
if not console_slience: print(chunkjson['choices'][0]["delta"]["content"], end='') | |
if observe_window is not None: | |
# 观测窗,把已经获取的数据显示出去 | |
if len(observe_window) >= 1: | |
observe_window[0] += chunkjson['choices'][0]["delta"]["content"] | |
# 看门狗,如果超过期限没有喂狗,则终止 | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("用户取消了程序。") | |
except Exception as e: | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
print(error_msg) | |
raise RuntimeError("Json解析不合常规") | |
return result | |
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): | |
""" | |
发送至chatGPT,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
if len(YIMODEL_API_KEY) == 0: | |
raise RuntimeError("没有设置YIMODEL_API_KEY选项") | |
if inputs == "": inputs = "空空如也的输入栏" | |
user_input = inputs | |
if additional_fn is not None: | |
from core_functional import handle_core_functionality | |
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) | |
raw_input = inputs | |
logging.info(f'[raw_input] {raw_input}') | |
chatbot.append((inputs, "")) | |
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面 | |
# check mis-behavior | |
if is_the_upload_folder(user_input): | |
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。") | |
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面 | |
time.sleep(2) | |
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream) | |
from .bridge_all import model_info | |
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] | |
history.append(inputs); history.append("") | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=True | |
response = requests.post(endpoint, headers=headers, proxies=proxies, | |
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break | |
except: | |
retry += 1 | |
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) | |
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面 | |
if retry > MAX_RETRY: raise TimeoutError | |
gpt_replying_buffer = "" | |
is_head_of_the_stream = True | |
if stream: | |
stream_response = response.iter_lines() | |
while True: | |
try: | |
chunk = next(stream_response) | |
except StopIteration: | |
break | |
except requests.exceptions.ConnectionError: | |
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。 | |
# 提前读取一些信息 (用于判断异常) | |
chunk_decoded, chunkjson, is_last_chunk = decode_chunk(chunk) | |
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r'"role":"assistant"' in chunk_decoded): | |
# 数据流的第一帧不携带content | |
is_head_of_the_stream = False; continue | |
if chunk: | |
try: | |
if is_last_chunk: | |
# 判定为数据流的结束,gpt_replying_buffer也写完了 | |
logging.info(f'[response] {gpt_replying_buffer}') | |
break | |
# 处理数据流的主体 | |
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}" | |
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"] | |
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面 | |
except Exception as e: | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面 | |
chunk = get_full_error(chunk, stream_response) | |
chunk_decoded = chunk.decode() | |
error_msg = chunk_decoded | |
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg) | |
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面 | |
print(error_msg) | |
return | |
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg): | |
from .bridge_all import model_info | |
if "bad_request" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] 已经超过了模型的最大上下文或是模型格式错误,请尝试削减单次输入的文本量。") | |
elif "authentication_error" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. 请确保API key有效。") | |
elif "not_found" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] {llm_kwargs['llm_model']} 无效,请确保使用小写的模型名称。") | |
elif "rate_limit" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] 遇到了控制请求速率限制,请一分钟后重试。") | |
elif "system_busy" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] 系统繁忙,请一分钟后重试。") | |
else: | |
from toolbox import regular_txt_to_markdown | |
tb_str = '```\n' + trimmed_format_exc() + '```' | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}") | |
return chatbot, history | |
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): | |
""" | |
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
""" | |
api_key = f"Bearer {YIMODEL_API_KEY}" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": api_key | |
} | |
conversation_cnt = len(history) // 2 | |
messages = [{"role": "system", "content": system_prompt}] | |
if conversation_cnt: | |
for index in range(0, 2*conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = history[index] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = history[index+1] | |
if what_i_have_asked["content"] != "": | |
if what_gpt_answer["content"] == "": continue | |
if what_gpt_answer["content"] == timeout_bot_msg: continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]['content'] = what_gpt_answer['content'] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = inputs | |
messages.append(what_i_ask_now) | |
model = llm_kwargs['llm_model'] | |
if llm_kwargs['llm_model'].startswith('one-api-'): | |
model = llm_kwargs['llm_model'][len('one-api-'):] | |
model, _ = read_one_api_model_name(model) | |
tokens = 600 if llm_kwargs['llm_model'] == 'yi-34b-chat-0205' else 4096 #yi-34b-chat-0205只有4k上下文... | |
payload = { | |
"model": model, | |
"messages": messages, | |
"temperature": llm_kwargs['temperature'], # 1.0, | |
"stream": stream, | |
"max_tokens": tokens | |
} | |
try: | |
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........") | |
except: | |
print('输入中可能存在乱码。') | |
return headers,payload |