|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
sentiment_model = pipeline("sentiment-analysis") |
|
chatbot_model = pipeline("text-generation", model="microsoft/DialoGPT-medium") |
|
summarization_model = pipeline("summarization") |
|
text_to_speech_model = pipeline("text-to-speech") |
|
|
|
def get_sentiment(input_text): |
|
analysis = sentiment_model(input_text) |
|
sent = analysis[0]['label'] |
|
score = analysis[0]['score'] |
|
return sent, score |
|
|
|
def chatbot_response(input_text): |
|
response = chatbot_model(input_text, max_length=100, do_sample=True)[0]['generated_text'] |
|
return response |
|
|
|
def summarize_text(input_text): |
|
summary = summarization_model(input_text, max_length=100, min_length=30, do_sample=False) |
|
return summary[0]['summary_text'] |
|
|
|
def text_to_speech(input_text): |
|
audio = text_to_speech_model(input_text) |
|
return audio |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Multi-Function AI Language Application") |
|
|
|
with gr.Tab("Sentiment Analysis"): |
|
text_input = gr.Textbox(label="Enter text for sentiment analysis:") |
|
sentiment_output = gr.Textbox(label="Sentiment") |
|
score_output = gr.Number(label="Confidence Score") |
|
sentiment_button = gr.Button("Analyze") |
|
sentiment_button.click(get_sentiment, inputs=text_input, outputs=[sentiment_output, score_output]) |
|
|
|
with gr.Tab("Chatbot"): |
|
chat_input = gr.Textbox(label="Enter your message:") |
|
chat_output = gr.Textbox(label="Chatbot Response") |
|
chat_button = gr.Button("Send") |
|
chat_button.click(chatbot_response, inputs=chat_input, outputs=chat_output) |
|
|
|
with gr.Tab("Summarization"): |
|
summary_input = gr.Textbox(label="Enter text to summarize:", lines=5) |
|
summary_output = gr.Textbox(label="Summary") |
|
summary_button = gr.Button("Summarize") |
|
summary_button.click(summarize_text, inputs=summary_input, outputs=summary_output) |
|
|
|
with gr.Tab("Text-to-Speech"): |
|
tts_input = gr.Textbox(label="Enter text to convert to speech:") |
|
tts_output = gr.Audio(label="Generated Speech") |
|
tts_button = gr.Button("Convert") |
|
tts_button.click(text_to_speech, inputs=tts_input, outputs=tts_output) |
|
|
|
|
|
demo.launch() |