gradient_dissent_bot / src /summarize.py
Gladiator's picture
prepare for the final big run
c270693
raw
history blame
4.06 kB
import os
from dataclasses import asdict
import pandas as pd
from langchain.callbacks import get_openai_callback
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DataFrameLoader
from langchain.prompts import PromptTemplate
from langchain.text_splitter import TokenTextSplitter
from tqdm import tqdm
from wandb.integration.langchain import WandbTracer
import wandb
from config import config
def get_data(artifact_name: str, total_episodes: int = None):
podcast_artifact = wandb.use_artifact(artifact_name, type="dataset")
podcast_artifact_dir = podcast_artifact.download(config.root_artifact_dir)
filename = artifact_name.split(":")[0].split("/")[-1]
df = pd.read_csv(os.path.join(podcast_artifact_dir, f"{filename}.csv"))
if total_episodes is not None:
df = df.iloc[:total_episodes]
return df
def summarize_episode(episode_df: pd.DataFrame):
# load docs into langchain format
loader = DataFrameLoader(episode_df, page_content_column="transcript")
data = loader.load()
# split the documents
text_splitter = TokenTextSplitter.from_tiktoken_encoder(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(data)
print(f"Number of documents for podcast {data[0].metadata['title']}: {len(docs)}")
# initialize LLM
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
# define map prompt
map_prompt = """Write a concise summary of the following short transcript from a podcast.
Don't add your opinions or interpretations.
{text}
CONCISE SUMMARY:"""
# define combine prompt
combine_prompt = """You have been provided with summaries of chunks of transcripts from a podcast.
Your task is to merge these intermediate summaries to create a brief and comprehensive summary of the entire podcast.
The summary should encompass all the crucial points of the podcast.
Ensure that the summary is atleast 2 paragraph long and effectively captures the essence of the podcast.
{text}
SUMMARY:"""
map_prompt_template = PromptTemplate(template=map_prompt, input_variables=["text"])
combine_prompt_template = PromptTemplate(template=combine_prompt, input_variables=["text"])
# initialize the summarizer chain
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=True,
map_prompt=map_prompt_template,
combine_prompt=combine_prompt_template,
)
summary = chain({"input_documents": docs})
return summary
if __name__ == "__main__":
# initialize wandb tracer
WandbTracer.init(
{
"project": config.project_name,
"job_type": "summarize",
"config": asdict(config),
}
)
# get scraped data
df = get_data(artifact_name=config.yt_podcast_data_artifact)
summaries = []
with get_openai_callback() as cb:
for episode in tqdm(df.iterrows(), total=len(df), desc="Summarizing episodes"):
episode_data = episode[1].to_frame().T
summary = summarize_episode(episode_data)
summaries.append(summary["output_text"])
print("*" * 25)
print(cb)
print("*" * 25)
wandb.log(
{
"total_prompt_tokens": cb.prompt_tokens,
"total_completion_tokens": cb.completion_tokens,
"total_tokens": cb.total_tokens,
"total_cost": cb.total_cost,
}
)
df["summary"] = summaries
# save data
path_to_save = os.path.join(config.root_data_dir, "summarized_podcasts.csv")
df.to_csv(path_to_save, index=False)
# log to wandb artifact
artifact = wandb.Artifact("summarized_podcasts", type="dataset")
artifact.add_file(path_to_save)
wandb.log_artifact(artifact)
# create wandb table
table = wandb.Table(dataframe=df)
wandb.log({"summarized_podcasts": table})
WandbTracer.finish()