Spaces:
Runtime error
Runtime error
import torch | |
import streamlit as st | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# local modules | |
from extractive_summarizer.model_processors import Summarizer | |
from src.utils import clean_text | |
from src.abstractive_summarizer import abstractive_summarizer | |
# abstractive summarizer model | |
def load_abs_model(): | |
tokenizer = T5Tokenizer.from_pretrained("t5-large") | |
model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
return tokenizer, model | |
if __name__ == "__main__": | |
# --------------------------------- | |
# Main Application | |
# --------------------------------- | |
st.title("Text Summarizer π") | |
summarize_type = st.sidebar.selectbox( | |
"Summarization type", options=["Extractive", "Abstractive"] | |
) | |
inp_text = st.text_input("Enter the text here") | |
inp_text = clean_text(inp_text) | |
# view summarized text (expander) | |
with st.expander("View input text"): | |
st.write(inp_text) | |
summarize = st.button("Summarize") | |
# called on toggle button [summarize] | |
if summarize: | |
if summarize_type == "Extractive": | |
# extractive summarizer | |
with st.spinner( | |
text="Creating extractive summary. This might take a few seconds ..." | |
): | |
ext_model = Summarizer() | |
summarized_text = ext_model(inp_text, num_sentences=5) | |
elif summarize_type == "Abstractive": | |
with st.spinner( | |
text="Creating abstractive summary. This might take a few seconds ..." | |
): | |
abs_tokenizer, abs_model = load_abs_model() | |
summarized_text = abstractive_summarizer( | |
abs_tokenizer, abs_model, inp_text | |
) | |
# final summarized output | |
st.subheader("Summarized text") | |
st.info(summarized_text) | |