Spaces:
Sleeping
Sleeping
ZhaohanM
commited on
Commit
·
7c46397
1
Parent(s):
5b5fc06
FusionGDA
Browse files- .gitattributes +2 -0
- .ipynb_checkpoints/gda_api-checkpoint.py +60 -0
- .ipynb_checkpoints/model-checkpoint.sh +24 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +5 -0
- data/pretrain/disgenet_latest.csv +3 -0
- gda_api.py +60 -0
- model.sh +24 -0
- requirements.txt +5 -0
- save_model_ckp/gda_infoNCE_2024_GPU3090/step_300_model.bin +3 -0
- src/finetune/.ipynb_checkpoints/finetune-checkpoint.py +416 -0
- src/finetune/finetune.py +416 -0
- src/utils/downstream_disgenet.py +148 -0
- src/utils/metric_learning_models.py +869 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
step_300_model.bin filter=lfs diff=lfs merge=lfs -text
|
37 |
+
disgenet_latest.csv filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/gda_api-checkpoint.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
def predict_top_100_genes(disease_id):
|
8 |
+
# Initialize paths
|
9 |
+
input_csv_path = '/data/downstream/{}_disease.csv'.format(disease_id)
|
10 |
+
output_csv_path = '/data/downstream/{}_top100.csv'.format(disease_id)
|
11 |
+
|
12 |
+
# Check if the output CSV already exists
|
13 |
+
if not os.path.exists(output_csv_path):
|
14 |
+
# Proceed with your existing code if the output file doesn't exist
|
15 |
+
df = pd.read_csv('/data/pretrain/disgenet_latest.csv')
|
16 |
+
df = df[df['proteinSeq'].notna()]
|
17 |
+
desired_diseaseDes = df[df['diseaseId'] == disease_id]['diseaseDes'].iloc[0]
|
18 |
+
related_proteins = df[df['diseaseDes'] == desired_diseaseDes]['proteinSeq'].unique()
|
19 |
+
df['score'] = df['proteinSeq'].isin(related_proteins).astype(int)
|
20 |
+
new_df = pd.DataFrame({
|
21 |
+
'diseaseId': disease_id,
|
22 |
+
'diseaseDes': desired_diseaseDes,
|
23 |
+
'geneSymbol': df['geneSymbol'],
|
24 |
+
'proteinSeq': df['proteinSeq'],
|
25 |
+
'score': df['score']
|
26 |
+
}).drop_duplicates().reset_index(drop=True)
|
27 |
+
|
28 |
+
new_df.to_csv(input_csv_path, index=False)
|
29 |
+
|
30 |
+
# Call the model script only if the output CSV does not exist
|
31 |
+
script_path = 'model.sh'
|
32 |
+
subprocess.run(['bash', script_path, input_csv_path, output_csv_path], check=True)
|
33 |
+
|
34 |
+
# Read the model output file or the existing file to get the top 100 genes
|
35 |
+
output_df = pd.read_csv(output_csv_path)
|
36 |
+
# Update here to select only the required columns and rename them
|
37 |
+
result_df = output_df[['geneSymbol', 'Prediction_score']].rename(columns={'geneSymbol': 'Gene', 'Prediction_score': 'Score'}).head(100)
|
38 |
+
|
39 |
+
return result_df
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=predict_top_100_genes,
|
44 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter Disease ID Here...", label="Disease ID"),
|
45 |
+
outputs=gr.Dataframe(label="Predicted Top 100 Related Genes"),
|
46 |
+
title="Gene Disease Association Prediction",
|
47 |
+
description = (
|
48 |
+
"This AI model predicts the top 100 genes associated with a given disease based on 16,733 genes."
|
49 |
+
" To get started, you need a Disease ID (UMLS CUI), which can be obtained from the DisGeNET database. "
|
50 |
+
"\n\n**Steps to Obtain a Disease ID from DisGeNET:**\n"
|
51 |
+
"1. Visit the DisGeNET website: [https://www.disgenet.org/search](https://www.disgenet.org/search).\n"
|
52 |
+
"2. Use the search bar to enter your disease of interest. For instance, if you're interested in 'Alzheimer's Disease', type 'Alzheimer's Disease' into the search bar.\n"
|
53 |
+
"3. From the search results, identify the disease you're researching. The Disease ID (UMLS CUI) is listed alongside each disease name, e.g. C0002395.\n"
|
54 |
+
"4. Enter the Disease ID into the input box below and submit.\n\n"
|
55 |
+
"The DisGeNET database contains all known gene-disease associations and associated evidence. In addition, it is able to find the corresponding diseases based on a gene.\n"
|
56 |
+
"\n**The model will take about 18 minutes to inference a new disease.**\n"
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch(share=True)
|
.ipynb_checkpoints/model-checkpoint.sh
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
input_csv_path="$1"
|
4 |
+
output_csv_path="$2"
|
5 |
+
max_depth=6
|
6 |
+
device='cuda:0'
|
7 |
+
model_path_list=(
|
8 |
+
"../../save_model_ckp/gda_infoNCE_2024_GPU3090" \
|
9 |
+
)
|
10 |
+
|
11 |
+
cd ../src/finetune/
|
12 |
+
for save_model_path in ${model_path_list[@]}; do
|
13 |
+
num_leaves=$((2**($max_depth-1)))
|
14 |
+
python finetune.py \
|
15 |
+
--input_csv_path $input_csv_path \
|
16 |
+
--output_csv_path $output_csv_path \
|
17 |
+
--save_model_path $save_model_path \
|
18 |
+
--device $device \
|
19 |
+
--batch_size 128 \
|
20 |
+
--step "300" \
|
21 |
+
--use_pooled \
|
22 |
+
--num_leaves $num_leaves \
|
23 |
+
--max_depth $max_depth
|
24 |
+
done
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lightgbm
|
2 |
+
pytorch-metric-learning
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
PyTDC
|
data/pretrain/disgenet_latest.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eddc359c7671bcb71a2975e96846c2dde66a4e60b886e47ff62a3f6b28868d0
|
3 |
+
size 1121691139
|
gda_api.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
def predict_top_100_genes(disease_id):
|
8 |
+
# Initialize paths
|
9 |
+
input_csv_path = '/data/downstream/{}_disease.csv'.format(disease_id)
|
10 |
+
output_csv_path = '/data/downstream/{}_top100.csv'.format(disease_id)
|
11 |
+
|
12 |
+
# Check if the output CSV already exists
|
13 |
+
if not os.path.exists(output_csv_path):
|
14 |
+
# Proceed with your existing code if the output file doesn't exist
|
15 |
+
df = pd.read_csv('/data/pretrain/disgenet_latest.csv')
|
16 |
+
df = df[df['proteinSeq'].notna()]
|
17 |
+
desired_diseaseDes = df[df['diseaseId'] == disease_id]['diseaseDes'].iloc[0]
|
18 |
+
related_proteins = df[df['diseaseDes'] == desired_diseaseDes]['proteinSeq'].unique()
|
19 |
+
df['score'] = df['proteinSeq'].isin(related_proteins).astype(int)
|
20 |
+
new_df = pd.DataFrame({
|
21 |
+
'diseaseId': disease_id,
|
22 |
+
'diseaseDes': desired_diseaseDes,
|
23 |
+
'geneSymbol': df['geneSymbol'],
|
24 |
+
'proteinSeq': df['proteinSeq'],
|
25 |
+
'score': df['score']
|
26 |
+
}).drop_duplicates().reset_index(drop=True)
|
27 |
+
|
28 |
+
new_df.to_csv(input_csv_path, index=False)
|
29 |
+
|
30 |
+
# Call the model script only if the output CSV does not exist
|
31 |
+
script_path = 'model.sh'
|
32 |
+
subprocess.run(['bash', script_path, input_csv_path, output_csv_path], check=True)
|
33 |
+
|
34 |
+
# Read the model output file or the existing file to get the top 100 genes
|
35 |
+
output_df = pd.read_csv(output_csv_path)
|
36 |
+
# Update here to select only the required columns and rename them
|
37 |
+
result_df = output_df[['geneSymbol', 'Prediction_score']].rename(columns={'geneSymbol': 'Gene', 'Prediction_score': 'Score'}).head(100)
|
38 |
+
|
39 |
+
return result_df
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=predict_top_100_genes,
|
44 |
+
inputs=gr.Textbox(lines=1, placeholder="Enter Disease ID Here...", label="Disease ID"),
|
45 |
+
outputs=gr.Dataframe(label="Predicted Top 100 Related Genes"),
|
46 |
+
title="Gene Disease Association Prediction",
|
47 |
+
description = (
|
48 |
+
"This AI model predicts the top 100 genes associated with a given disease based on 16,733 genes."
|
49 |
+
" To get started, you need a Disease ID (UMLS CUI), which can be obtained from the DisGeNET database. "
|
50 |
+
"\n\n**Steps to Obtain a Disease ID from DisGeNET:**\n"
|
51 |
+
"1. Visit the DisGeNET website: [https://www.disgenet.org/search](https://www.disgenet.org/search).\n"
|
52 |
+
"2. Use the search bar to enter your disease of interest. For instance, if you're interested in 'Alzheimer's Disease', type 'Alzheimer's Disease' into the search bar.\n"
|
53 |
+
"3. From the search results, identify the disease you're researching. The Disease ID (UMLS CUI) is listed alongside each disease name, e.g. C0002395.\n"
|
54 |
+
"4. Enter the Disease ID into the input box below and submit.\n\n"
|
55 |
+
"The DisGeNET database contains all known gene-disease associations and associated evidence. In addition, it is able to find the corresponding diseases based on a gene.\n"
|
56 |
+
"\n**The model will take about 18 minutes to inference a new disease.**\n"
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch(share=True)
|
model.sh
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
input_csv_path="$1"
|
4 |
+
output_csv_path="$2"
|
5 |
+
max_depth=6
|
6 |
+
device='cuda:0'
|
7 |
+
model_path_list=(
|
8 |
+
"../../save_model_ckp/gda_infoNCE_2024_GPU3090" \
|
9 |
+
)
|
10 |
+
|
11 |
+
cd ../src/finetune/
|
12 |
+
for save_model_path in ${model_path_list[@]}; do
|
13 |
+
num_leaves=$((2**($max_depth-1)))
|
14 |
+
python finetune.py \
|
15 |
+
--input_csv_path $input_csv_path \
|
16 |
+
--output_csv_path $output_csv_path \
|
17 |
+
--save_model_path $save_model_path \
|
18 |
+
--device $device \
|
19 |
+
--batch_size 128 \
|
20 |
+
--step "300" \
|
21 |
+
--use_pooled \
|
22 |
+
--num_leaves $num_leaves \
|
23 |
+
--max_depth $max_depth
|
24 |
+
done
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lightgbm
|
2 |
+
pytorch-metric-learning
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
PyTDC
|
save_model_ckp/gda_infoNCE_2024_GPU3090/step_300_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:504129ccb1c717366e843df99e73d629b5c0bac0603deb8dbc6fb9b5479387b7
|
3 |
+
size 3131981635
|
src/finetune/.ipynb_checkpoints/finetune-checkpoint.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import string
|
5 |
+
import sys
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
sys.path.append("../")
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import lightgbm as lgb
|
13 |
+
import sklearn.metrics as metrics
|
14 |
+
from sklearn.utils import class_weight
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, precision_recall_fscore_support,roc_auc_score
|
17 |
+
from torch.utils.data import DataLoader
|
18 |
+
from tqdm.auto import tqdm
|
19 |
+
from transformers import EsmTokenizer, EsmForMaskedLM, BertModel, BertTokenizer, AutoTokenizer, EsmModel
|
20 |
+
from utils.downstream_disgenet import DisGeNETProcessor
|
21 |
+
from utils.metric_learning_models import GDA_Metric_Learning
|
22 |
+
|
23 |
+
def parse_config():
|
24 |
+
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument('-f')
|
26 |
+
parser.add_argument("--step", type=int, default=0)
|
27 |
+
parser.add_argument(
|
28 |
+
"--save_model_path",
|
29 |
+
type=str,
|
30 |
+
default=None,
|
31 |
+
help="path of the pretrained disease model located",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--prot_encoder_path",
|
35 |
+
type=str,
|
36 |
+
default="facebook/esm2_t33_650M_UR50D",
|
37 |
+
#"facebook/galactica-6.7b", "Rostlab/prot_bert" “facebook/esm2_t33_650M_UR50D”
|
38 |
+
help="path/name of protein encoder model located",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--disease_encoder_path",
|
42 |
+
type=str,
|
43 |
+
default="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
44 |
+
help="path/name of textual pre-trained language model",
|
45 |
+
)
|
46 |
+
parser.add_argument("--reduction_factor", type=int, default=8)
|
47 |
+
parser.add_argument(
|
48 |
+
"--loss",
|
49 |
+
help="{ms_loss|infoNCE|cosine_loss|circle_loss|triplet_loss}}",
|
50 |
+
default="infoNCE",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--input_feature_save_path",
|
54 |
+
type=str,
|
55 |
+
default="../../data/processed_disease",
|
56 |
+
help="path of tokenized training data",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
|
60 |
+
)
|
61 |
+
parser.add_argument("--batch_size", type=int, default=256)
|
62 |
+
parser.add_argument("--patience", type=int, default=5)
|
63 |
+
parser.add_argument("--num_leaves", type=int, default=5)
|
64 |
+
parser.add_argument("--max_depth", type=int, default=5)
|
65 |
+
parser.add_argument("--lr", type=float, default=0.35)
|
66 |
+
parser.add_argument("--dropout", type=float, default=0.1)
|
67 |
+
parser.add_argument("--test", type=int, default=0)
|
68 |
+
parser.add_argument("--use_miner", action="store_true")
|
69 |
+
parser.add_argument("--miner_margin", default=0.2, type=float)
|
70 |
+
parser.add_argument("--freeze_prot_encoder", action="store_true")
|
71 |
+
parser.add_argument("--freeze_disease_encoder", action="store_true")
|
72 |
+
parser.add_argument("--use_adapter", action="store_true")
|
73 |
+
parser.add_argument("--use_pooled", action="store_true")
|
74 |
+
parser.add_argument("--device", type=str, default="cpu")
|
75 |
+
parser.add_argument(
|
76 |
+
"--use_both_feature",
|
77 |
+
help="use the both features of gnn_feature_v1_samples and pretrained models",
|
78 |
+
action="store_true",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--use_v1_feature_only",
|
82 |
+
help="use the features of gnn_feature_v1_samples only",
|
83 |
+
action="store_true",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--save_path_prefix",
|
87 |
+
type=str,
|
88 |
+
default="../../save_model_ckp/finetune/",
|
89 |
+
help="save the result in which directory",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
|
93 |
+
)
|
94 |
+
# Add argument for input CSV file path
|
95 |
+
parser.add_argument("--input_csv_path", type=str, required=True, help="Path to the input CSV file.")
|
96 |
+
|
97 |
+
# Add argument for output CSV file path
|
98 |
+
parser.add_argument("--output_csv_path", type=str, required=True, help="Path to the output CSV file.")
|
99 |
+
return parser.parse_args()
|
100 |
+
|
101 |
+
def get_feature(model, dataloader, args):
|
102 |
+
x = list()
|
103 |
+
y = list()
|
104 |
+
with torch.no_grad():
|
105 |
+
for step, batch in tqdm(enumerate(dataloader)):
|
106 |
+
prot_input_ids, prot_attention_mask, dis_input_ids, dis_attention_mask, y1 = batch
|
107 |
+
prot_input = {
|
108 |
+
'input_ids': prot_input_ids.to(args.device),
|
109 |
+
'attention_mask': prot_attention_mask.to(args.device)
|
110 |
+
}
|
111 |
+
dis_input = {
|
112 |
+
'input_ids': dis_input_ids.to(args.device),
|
113 |
+
'attention_mask': dis_attention_mask.to(args.device)
|
114 |
+
}
|
115 |
+
feature_output = model.predict(prot_input, dis_input)
|
116 |
+
x1 = feature_output.cpu().numpy()
|
117 |
+
x.append(x1)
|
118 |
+
y.append(y1.cpu().numpy())
|
119 |
+
x = np.concatenate(x, axis=0)
|
120 |
+
y = np.concatenate(y, axis=0)
|
121 |
+
return x, y
|
122 |
+
|
123 |
+
|
124 |
+
def encode_pretrained_feature(args, disGeNET):
|
125 |
+
input_feat_file = os.path.join(
|
126 |
+
args.input_feature_save_path,
|
127 |
+
f"{args.model_short}_{args.step}_use_{'pooled' if args.use_pooled else 'cls'}_feat.npz",
|
128 |
+
)
|
129 |
+
|
130 |
+
if os.path.exists(input_feat_file):
|
131 |
+
print(f"load prior feature data from {input_feat_file}.")
|
132 |
+
loaded = np.load(input_feat_file)
|
133 |
+
x_train, y_train = loaded["x_train"], loaded["y_train"]
|
134 |
+
x_valid, y_valid = loaded["x_valid"], loaded["y_valid"]
|
135 |
+
# x_test, y_test = loaded["x_test"], loaded["y_test"]
|
136 |
+
|
137 |
+
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
138 |
+
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
139 |
+
print("prot_tokenizer", len(prot_tokenizer))
|
140 |
+
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
141 |
+
print("disease_tokenizer", len(disease_tokenizer))
|
142 |
+
|
143 |
+
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
144 |
+
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
145 |
+
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
146 |
+
|
147 |
+
if args.save_model_path:
|
148 |
+
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
149 |
+
|
150 |
+
if args.use_adapter:
|
151 |
+
prot_model_path = os.path.join(
|
152 |
+
args.save_model_path, f"prot_adapter_step_{args.step}"
|
153 |
+
)
|
154 |
+
disease_model_path = os.path.join(
|
155 |
+
args.save_model_path, f"disease_adapter_step_{args.step}"
|
156 |
+
)
|
157 |
+
model.load_adapters(prot_model_path, disease_model_path)
|
158 |
+
else:
|
159 |
+
prot_model_path = os.path.join(
|
160 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
161 |
+
)# , f"step_{args.step}_model.bin"
|
162 |
+
disease_model_path = os.path.join(
|
163 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
164 |
+
)
|
165 |
+
model.non_adapters(prot_model_path, disease_model_path)
|
166 |
+
|
167 |
+
model = model.to(args.device)
|
168 |
+
prot_model = model.prot_encoder
|
169 |
+
disease_model = model.disease_encoder
|
170 |
+
print(f"loaded prior model {args.save_model_path}.")
|
171 |
+
|
172 |
+
def collate_fn_batch_encoding(batch):
|
173 |
+
query1, query2, scores = zip(*batch)
|
174 |
+
|
175 |
+
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
176 |
+
list(query1),
|
177 |
+
max_length=512,
|
178 |
+
padding="max_length",
|
179 |
+
truncation=True,
|
180 |
+
add_special_tokens=True,
|
181 |
+
return_tensors="pt",
|
182 |
+
)
|
183 |
+
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
184 |
+
list(query2),
|
185 |
+
max_length=512,
|
186 |
+
padding="max_length",
|
187 |
+
truncation=True,
|
188 |
+
add_special_tokens=True,
|
189 |
+
return_tensors="pt",
|
190 |
+
)
|
191 |
+
scores = torch.tensor(list(scores))
|
192 |
+
attention_mask1 = query_encodings1["attention_mask"].bool()
|
193 |
+
attention_mask2 = query_encodings2["attention_mask"].bool()
|
194 |
+
|
195 |
+
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
196 |
+
|
197 |
+
test_examples = disGeNET.get_test_examples(args.test)
|
198 |
+
print(f"get test examples: {len(test_examples)}")
|
199 |
+
|
200 |
+
test_dataloader = DataLoader(
|
201 |
+
test_examples,
|
202 |
+
batch_size=args.batch_size,
|
203 |
+
shuffle=False,
|
204 |
+
collate_fn=collate_fn_batch_encoding,
|
205 |
+
)
|
206 |
+
print( f"dataset loaded: test-{len(test_examples)}")
|
207 |
+
|
208 |
+
x_test, y_test = get_feature(model, test_dataloader, args)
|
209 |
+
|
210 |
+
else:
|
211 |
+
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
212 |
+
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
213 |
+
print("prot_tokenizer", len(prot_tokenizer))
|
214 |
+
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
215 |
+
print("disease_tokenizer", len(disease_tokenizer))
|
216 |
+
|
217 |
+
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
218 |
+
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
219 |
+
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
220 |
+
|
221 |
+
if args.save_model_path:
|
222 |
+
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
223 |
+
|
224 |
+
if args.use_adapter:
|
225 |
+
prot_model_path = os.path.join(
|
226 |
+
args.save_model_path, f"prot_adapter_step_{args.step}"
|
227 |
+
)
|
228 |
+
disease_model_path = os.path.join(
|
229 |
+
args.save_model_path, f"disease_adapter_step_{args.step}"
|
230 |
+
)
|
231 |
+
model.load_adapters(prot_model_path, disease_model_path)
|
232 |
+
else:
|
233 |
+
prot_model_path = os.path.join(
|
234 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
235 |
+
)# , f"step_{args.step}_model.bin"
|
236 |
+
disease_model_path = os.path.join(
|
237 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
238 |
+
)
|
239 |
+
model.non_adapters(prot_model_path, disease_model_path)
|
240 |
+
|
241 |
+
model = model.to(args.device)
|
242 |
+
prot_model = model.prot_encoder
|
243 |
+
disease_model = model.disease_encoder
|
244 |
+
print(f"loaded prior model {args.save_model_path}.")
|
245 |
+
|
246 |
+
def collate_fn_batch_encoding(batch):
|
247 |
+
query1, query2, scores = zip(*batch)
|
248 |
+
|
249 |
+
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
250 |
+
list(query1),
|
251 |
+
max_length=512,
|
252 |
+
padding="max_length",
|
253 |
+
truncation=True,
|
254 |
+
add_special_tokens=True,
|
255 |
+
return_tensors="pt",
|
256 |
+
)
|
257 |
+
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
258 |
+
list(query2),
|
259 |
+
max_length=512,
|
260 |
+
padding="max_length",
|
261 |
+
truncation=True,
|
262 |
+
add_special_tokens=True,
|
263 |
+
return_tensors="pt",
|
264 |
+
)
|
265 |
+
scores = torch.tensor(list(scores))
|
266 |
+
attention_mask1 = query_encodings1["attention_mask"].bool()
|
267 |
+
attention_mask2 = query_encodings2["attention_mask"].bool()
|
268 |
+
|
269 |
+
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
270 |
+
|
271 |
+
train_examples = disGeNET.get_train_examples(args.test)
|
272 |
+
print(f"get training examples: {len(train_examples)}")
|
273 |
+
valid_examples = disGeNET.get_val_examples(args.test)
|
274 |
+
print(f"get validation examples: {len(valid_examples)}")
|
275 |
+
test_examples = disGeNET.get_test_examples(args.test)
|
276 |
+
print(f"get test examples: {len(test_examples)}")
|
277 |
+
|
278 |
+
train_dataloader = DataLoader(
|
279 |
+
train_examples,
|
280 |
+
batch_size=args.batch_size,
|
281 |
+
shuffle=False,
|
282 |
+
collate_fn=collate_fn_batch_encoding,
|
283 |
+
)
|
284 |
+
valid_dataloader = DataLoader(
|
285 |
+
valid_examples,
|
286 |
+
batch_size=args.batch_size,
|
287 |
+
shuffle=False,
|
288 |
+
collate_fn=collate_fn_batch_encoding,
|
289 |
+
)
|
290 |
+
test_dataloader = DataLoader(
|
291 |
+
test_examples,
|
292 |
+
batch_size=args.batch_size,
|
293 |
+
shuffle=False,
|
294 |
+
collate_fn=collate_fn_batch_encoding,
|
295 |
+
)
|
296 |
+
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
|
297 |
+
|
298 |
+
x_train, y_train = get_feature(model, train_dataloader, args)
|
299 |
+
x_valid, y_valid = get_feature(model, valid_dataloader, args)
|
300 |
+
x_test, y_test = get_feature(model, test_dataloader, args)
|
301 |
+
|
302 |
+
# Save input feature to reduce encoding time
|
303 |
+
np.savez_compressed(
|
304 |
+
input_feat_file,
|
305 |
+
x_train=x_train,
|
306 |
+
y_train=y_train,
|
307 |
+
x_valid=x_valid,
|
308 |
+
y_valid=y_valid,
|
309 |
+
)
|
310 |
+
print(f"save input feature into {input_feat_file}")
|
311 |
+
# Save input feature to reduce encoding time
|
312 |
+
return x_train, y_train, x_valid, y_valid, x_test, y_test
|
313 |
+
|
314 |
+
|
315 |
+
def train(args):
|
316 |
+
# defining parameters
|
317 |
+
if args.save_model_path:
|
318 |
+
args.model_short = (
|
319 |
+
args.save_model_path.split("/")[-1]
|
320 |
+
)
|
321 |
+
print(f"model name {args.model_short}")
|
322 |
+
|
323 |
+
else:
|
324 |
+
args.model_short = (
|
325 |
+
args.disease_encoder_path.split("/")[-1]
|
326 |
+
)
|
327 |
+
print(f"model name {args.model_short}")
|
328 |
+
|
329 |
+
# disGeNET = DisGeNETProcessor()
|
330 |
+
disGeNET = DisGeNETProcessor(input_csv_path=args.input_csv_path)
|
331 |
+
|
332 |
+
|
333 |
+
x_train, y_train, x_valid, y_valid, x_test, y_test = encode_pretrained_feature(args, disGeNET)
|
334 |
+
|
335 |
+
print("train: ", x_train.shape, y_train.shape)
|
336 |
+
print("valid: ", x_valid.shape, y_valid.shape)
|
337 |
+
print("test: ", x_test.shape, y_test.shape)
|
338 |
+
|
339 |
+
params = {
|
340 |
+
"task": "train", # "predict" train
|
341 |
+
"boosting": "gbdt", # "The options are "gbdt" (traditional Gradient Boosting Decision Tree), "rf" (Random Forest), "dart" (Dropouts meet Multiple Additive Regression Trees), or "goss" (Gradient-based One-Side Sampling). The default is "gbdt"."
|
342 |
+
"objective": "binary",
|
343 |
+
"num_leaves": args.num_leaves,
|
344 |
+
"early_stopping_round": 30,
|
345 |
+
"max_depth": args.max_depth,
|
346 |
+
"learning_rate": args.lr,
|
347 |
+
"metric": "binary_logloss", #"metric": "l2","binary_logloss" "auc"
|
348 |
+
"verbose": 1,
|
349 |
+
}
|
350 |
+
|
351 |
+
lgb_train = lgb.Dataset(x_train, y_train)
|
352 |
+
lgb_valid = lgb.Dataset(x_valid, y_valid)
|
353 |
+
lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)
|
354 |
+
|
355 |
+
# fitting the model
|
356 |
+
model = lgb.train(
|
357 |
+
params, train_set=lgb_train, valid_sets=lgb_valid)
|
358 |
+
|
359 |
+
# prediction
|
360 |
+
valid_y_pred = model.predict(x_valid)
|
361 |
+
test_y_pred = model.predict(x_test)
|
362 |
+
|
363 |
+
# predict liver fibrosis
|
364 |
+
predictions_df = pd.DataFrame(test_y_pred, columns=["Prediction_score"])
|
365 |
+
# data_test = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test_tdc.csv')
|
366 |
+
data_test = pd.read_csv(args.input_csv_path)
|
367 |
+
predictions = pd.concat([data_test, predictions_df], axis=1)
|
368 |
+
# filtered_dataset = test_dataset_with_predictions[test_dataset_with_predictions['diseaseId'] == 'C0009714']
|
369 |
+
predictions.sort_values(by='Prediction_score', ascending=False, inplace=True)
|
370 |
+
top_100_predictions = predictions.head(100)
|
371 |
+
top_100_predictions.to_csv(args.output_csv_path, index=False)
|
372 |
+
|
373 |
+
# Accuracy
|
374 |
+
y_pred = model.predict(x_test, num_iteration=model.best_iteration)
|
375 |
+
y_pred[y_pred >= 0.5] = 1
|
376 |
+
y_pred[y_pred < 0.5] = 0
|
377 |
+
accuracy = accuracy_score(y_test, y_pred)
|
378 |
+
|
379 |
+
# AUC
|
380 |
+
valid_roc_auc_score = metrics.roc_auc_score(y_valid, valid_y_pred)
|
381 |
+
valid_average_precision_score = metrics.average_precision_score(
|
382 |
+
y_valid, valid_y_pred
|
383 |
+
)
|
384 |
+
test_roc_auc_score = metrics.roc_auc_score(y_test, test_y_pred)
|
385 |
+
test_average_precision_score = metrics.average_precision_score(y_test, test_y_pred)
|
386 |
+
|
387 |
+
# AUPR
|
388 |
+
valid_aupr = metrics.average_precision_score(y_valid, valid_y_pred)
|
389 |
+
test_aupr = metrics.average_precision_score(y_test, test_y_pred)
|
390 |
+
|
391 |
+
# Fmax
|
392 |
+
valid_precision, valid_recall, valid_thresholds = precision_recall_curve(y_valid, valid_y_pred)
|
393 |
+
valid_fmax = (2 * valid_precision * valid_recall / (valid_precision + valid_recall)).max()
|
394 |
+
test_precision, test_recall, test_thresholds = precision_recall_curve(y_test, test_y_pred)
|
395 |
+
test_fmax = (2 * test_precision * test_recall / (test_precision + test_recall)).max()
|
396 |
+
|
397 |
+
# F1
|
398 |
+
valid_f1 = f1_score(y_valid, valid_y_pred >= 0.5)
|
399 |
+
test_f1 = f1_score(y_test, test_y_pred >= 0.5)
|
400 |
+
|
401 |
+
|
402 |
+
if __name__ == "__main__":
|
403 |
+
args = parse_config()
|
404 |
+
if torch.cuda.is_available():
|
405 |
+
print("cuda is available.")
|
406 |
+
print(f"current device {args}.")
|
407 |
+
else:
|
408 |
+
args.device = "cpu"
|
409 |
+
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
410 |
+
random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
|
411 |
+
best_model_dir = (
|
412 |
+
f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
|
413 |
+
)
|
414 |
+
os.makedirs(best_model_dir)
|
415 |
+
args.save_name = best_model_dir
|
416 |
+
train(args)
|
src/finetune/finetune.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import string
|
5 |
+
import sys
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
sys.path.append("../")
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import lightgbm as lgb
|
13 |
+
import sklearn.metrics as metrics
|
14 |
+
from sklearn.utils import class_weight
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn.metrics import accuracy_score, precision_recall_curve, f1_score, precision_recall_fscore_support,roc_auc_score
|
17 |
+
from torch.utils.data import DataLoader
|
18 |
+
from tqdm.auto import tqdm
|
19 |
+
from transformers import EsmTokenizer, EsmForMaskedLM, BertModel, BertTokenizer, AutoTokenizer, EsmModel
|
20 |
+
from utils.downstream_disgenet import DisGeNETProcessor
|
21 |
+
from utils.metric_learning_models import GDA_Metric_Learning
|
22 |
+
|
23 |
+
def parse_config():
|
24 |
+
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument('-f')
|
26 |
+
parser.add_argument("--step", type=int, default=0)
|
27 |
+
parser.add_argument(
|
28 |
+
"--save_model_path",
|
29 |
+
type=str,
|
30 |
+
default=None,
|
31 |
+
help="path of the pretrained disease model located",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--prot_encoder_path",
|
35 |
+
type=str,
|
36 |
+
default="facebook/esm2_t33_650M_UR50D",
|
37 |
+
#"facebook/galactica-6.7b", "Rostlab/prot_bert" “facebook/esm2_t33_650M_UR50D”
|
38 |
+
help="path/name of protein encoder model located",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--disease_encoder_path",
|
42 |
+
type=str,
|
43 |
+
default="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
44 |
+
help="path/name of textual pre-trained language model",
|
45 |
+
)
|
46 |
+
parser.add_argument("--reduction_factor", type=int, default=8)
|
47 |
+
parser.add_argument(
|
48 |
+
"--loss",
|
49 |
+
help="{ms_loss|infoNCE|cosine_loss|circle_loss|triplet_loss}}",
|
50 |
+
default="infoNCE",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--input_feature_save_path",
|
54 |
+
type=str,
|
55 |
+
default="../../data/processed_disease",
|
56 |
+
help="path of tokenized training data",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}"
|
60 |
+
)
|
61 |
+
parser.add_argument("--batch_size", type=int, default=256)
|
62 |
+
parser.add_argument("--patience", type=int, default=5)
|
63 |
+
parser.add_argument("--num_leaves", type=int, default=5)
|
64 |
+
parser.add_argument("--max_depth", type=int, default=5)
|
65 |
+
parser.add_argument("--lr", type=float, default=0.35)
|
66 |
+
parser.add_argument("--dropout", type=float, default=0.1)
|
67 |
+
parser.add_argument("--test", type=int, default=0)
|
68 |
+
parser.add_argument("--use_miner", action="store_true")
|
69 |
+
parser.add_argument("--miner_margin", default=0.2, type=float)
|
70 |
+
parser.add_argument("--freeze_prot_encoder", action="store_true")
|
71 |
+
parser.add_argument("--freeze_disease_encoder", action="store_true")
|
72 |
+
parser.add_argument("--use_adapter", action="store_true")
|
73 |
+
parser.add_argument("--use_pooled", action="store_true")
|
74 |
+
parser.add_argument("--device", type=str, default="cpu")
|
75 |
+
parser.add_argument(
|
76 |
+
"--use_both_feature",
|
77 |
+
help="use the both features of gnn_feature_v1_samples and pretrained models",
|
78 |
+
action="store_true",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--use_v1_feature_only",
|
82 |
+
help="use the features of gnn_feature_v1_samples only",
|
83 |
+
action="store_true",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--save_path_prefix",
|
87 |
+
type=str,
|
88 |
+
default="../../save_model_ckp/finetune/",
|
89 |
+
help="save the result in which directory",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--save_name", default="fine_tune", type=str, help="the name of the saved file"
|
93 |
+
)
|
94 |
+
# Add argument for input CSV file path
|
95 |
+
parser.add_argument("--input_csv_path", type=str, required=True, help="Path to the input CSV file.")
|
96 |
+
|
97 |
+
# Add argument for output CSV file path
|
98 |
+
parser.add_argument("--output_csv_path", type=str, required=True, help="Path to the output CSV file.")
|
99 |
+
return parser.parse_args()
|
100 |
+
|
101 |
+
def get_feature(model, dataloader, args):
|
102 |
+
x = list()
|
103 |
+
y = list()
|
104 |
+
with torch.no_grad():
|
105 |
+
for step, batch in tqdm(enumerate(dataloader)):
|
106 |
+
prot_input_ids, prot_attention_mask, dis_input_ids, dis_attention_mask, y1 = batch
|
107 |
+
prot_input = {
|
108 |
+
'input_ids': prot_input_ids.to(args.device),
|
109 |
+
'attention_mask': prot_attention_mask.to(args.device)
|
110 |
+
}
|
111 |
+
dis_input = {
|
112 |
+
'input_ids': dis_input_ids.to(args.device),
|
113 |
+
'attention_mask': dis_attention_mask.to(args.device)
|
114 |
+
}
|
115 |
+
feature_output = model.predict(prot_input, dis_input)
|
116 |
+
x1 = feature_output.cpu().numpy()
|
117 |
+
x.append(x1)
|
118 |
+
y.append(y1.cpu().numpy())
|
119 |
+
x = np.concatenate(x, axis=0)
|
120 |
+
y = np.concatenate(y, axis=0)
|
121 |
+
return x, y
|
122 |
+
|
123 |
+
|
124 |
+
def encode_pretrained_feature(args, disGeNET):
|
125 |
+
input_feat_file = os.path.join(
|
126 |
+
args.input_feature_save_path,
|
127 |
+
f"{args.model_short}_{args.step}_use_{'pooled' if args.use_pooled else 'cls'}_feat.npz",
|
128 |
+
)
|
129 |
+
|
130 |
+
if os.path.exists(input_feat_file):
|
131 |
+
print(f"load prior feature data from {input_feat_file}.")
|
132 |
+
loaded = np.load(input_feat_file)
|
133 |
+
x_train, y_train = loaded["x_train"], loaded["y_train"]
|
134 |
+
x_valid, y_valid = loaded["x_valid"], loaded["y_valid"]
|
135 |
+
# x_test, y_test = loaded["x_test"], loaded["y_test"]
|
136 |
+
|
137 |
+
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
138 |
+
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
139 |
+
print("prot_tokenizer", len(prot_tokenizer))
|
140 |
+
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
141 |
+
print("disease_tokenizer", len(disease_tokenizer))
|
142 |
+
|
143 |
+
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
144 |
+
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
145 |
+
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
146 |
+
|
147 |
+
if args.save_model_path:
|
148 |
+
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
149 |
+
|
150 |
+
if args.use_adapter:
|
151 |
+
prot_model_path = os.path.join(
|
152 |
+
args.save_model_path, f"prot_adapter_step_{args.step}"
|
153 |
+
)
|
154 |
+
disease_model_path = os.path.join(
|
155 |
+
args.save_model_path, f"disease_adapter_step_{args.step}"
|
156 |
+
)
|
157 |
+
model.load_adapters(prot_model_path, disease_model_path)
|
158 |
+
else:
|
159 |
+
prot_model_path = os.path.join(
|
160 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
161 |
+
)# , f"step_{args.step}_model.bin"
|
162 |
+
disease_model_path = os.path.join(
|
163 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
164 |
+
)
|
165 |
+
model.non_adapters(prot_model_path, disease_model_path)
|
166 |
+
|
167 |
+
model = model.to(args.device)
|
168 |
+
prot_model = model.prot_encoder
|
169 |
+
disease_model = model.disease_encoder
|
170 |
+
print(f"loaded prior model {args.save_model_path}.")
|
171 |
+
|
172 |
+
def collate_fn_batch_encoding(batch):
|
173 |
+
query1, query2, scores = zip(*batch)
|
174 |
+
|
175 |
+
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
176 |
+
list(query1),
|
177 |
+
max_length=512,
|
178 |
+
padding="max_length",
|
179 |
+
truncation=True,
|
180 |
+
add_special_tokens=True,
|
181 |
+
return_tensors="pt",
|
182 |
+
)
|
183 |
+
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
184 |
+
list(query2),
|
185 |
+
max_length=512,
|
186 |
+
padding="max_length",
|
187 |
+
truncation=True,
|
188 |
+
add_special_tokens=True,
|
189 |
+
return_tensors="pt",
|
190 |
+
)
|
191 |
+
scores = torch.tensor(list(scores))
|
192 |
+
attention_mask1 = query_encodings1["attention_mask"].bool()
|
193 |
+
attention_mask2 = query_encodings2["attention_mask"].bool()
|
194 |
+
|
195 |
+
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
196 |
+
|
197 |
+
test_examples = disGeNET.get_test_examples(args.test)
|
198 |
+
print(f"get test examples: {len(test_examples)}")
|
199 |
+
|
200 |
+
test_dataloader = DataLoader(
|
201 |
+
test_examples,
|
202 |
+
batch_size=args.batch_size,
|
203 |
+
shuffle=False,
|
204 |
+
collate_fn=collate_fn_batch_encoding,
|
205 |
+
)
|
206 |
+
print( f"dataset loaded: test-{len(test_examples)}")
|
207 |
+
|
208 |
+
x_test, y_test = get_feature(model, test_dataloader, args)
|
209 |
+
|
210 |
+
else:
|
211 |
+
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
212 |
+
# prot_tokenizer = BertTokenizer.from_pretrained(args.prot_encoder_path, do_lower_case=False)
|
213 |
+
print("prot_tokenizer", len(prot_tokenizer))
|
214 |
+
disease_tokenizer = BertTokenizer.from_pretrained(args.disease_encoder_path)
|
215 |
+
print("disease_tokenizer", len(disease_tokenizer))
|
216 |
+
|
217 |
+
prot_model = EsmModel.from_pretrained(args.prot_encoder_path)
|
218 |
+
# prot_model = BertModel.from_pretrained(args.prot_encoder_path)
|
219 |
+
disease_model = BertModel.from_pretrained(args.disease_encoder_path)
|
220 |
+
|
221 |
+
if args.save_model_path:
|
222 |
+
model = GDA_Metric_Learning(prot_model, disease_model, 1280, 768, args)
|
223 |
+
|
224 |
+
if args.use_adapter:
|
225 |
+
prot_model_path = os.path.join(
|
226 |
+
args.save_model_path, f"prot_adapter_step_{args.step}"
|
227 |
+
)
|
228 |
+
disease_model_path = os.path.join(
|
229 |
+
args.save_model_path, f"disease_adapter_step_{args.step}"
|
230 |
+
)
|
231 |
+
model.load_adapters(prot_model_path, disease_model_path)
|
232 |
+
else:
|
233 |
+
prot_model_path = os.path.join(
|
234 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
235 |
+
)# , f"step_{args.step}_model.bin"
|
236 |
+
disease_model_path = os.path.join(
|
237 |
+
args.save_model_path, f"step_{args.step}_model.bin"
|
238 |
+
)
|
239 |
+
model.non_adapters(prot_model_path, disease_model_path)
|
240 |
+
|
241 |
+
model = model.to(args.device)
|
242 |
+
prot_model = model.prot_encoder
|
243 |
+
disease_model = model.disease_encoder
|
244 |
+
print(f"loaded prior model {args.save_model_path}.")
|
245 |
+
|
246 |
+
def collate_fn_batch_encoding(batch):
|
247 |
+
query1, query2, scores = zip(*batch)
|
248 |
+
|
249 |
+
query_encodings1 = prot_tokenizer.batch_encode_plus(
|
250 |
+
list(query1),
|
251 |
+
max_length=512,
|
252 |
+
padding="max_length",
|
253 |
+
truncation=True,
|
254 |
+
add_special_tokens=True,
|
255 |
+
return_tensors="pt",
|
256 |
+
)
|
257 |
+
query_encodings2 = disease_tokenizer.batch_encode_plus(
|
258 |
+
list(query2),
|
259 |
+
max_length=512,
|
260 |
+
padding="max_length",
|
261 |
+
truncation=True,
|
262 |
+
add_special_tokens=True,
|
263 |
+
return_tensors="pt",
|
264 |
+
)
|
265 |
+
scores = torch.tensor(list(scores))
|
266 |
+
attention_mask1 = query_encodings1["attention_mask"].bool()
|
267 |
+
attention_mask2 = query_encodings2["attention_mask"].bool()
|
268 |
+
|
269 |
+
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
|
270 |
+
|
271 |
+
train_examples = disGeNET.get_train_examples(args.test)
|
272 |
+
print(f"get training examples: {len(train_examples)}")
|
273 |
+
valid_examples = disGeNET.get_val_examples(args.test)
|
274 |
+
print(f"get validation examples: {len(valid_examples)}")
|
275 |
+
test_examples = disGeNET.get_test_examples(args.test)
|
276 |
+
print(f"get test examples: {len(test_examples)}")
|
277 |
+
|
278 |
+
train_dataloader = DataLoader(
|
279 |
+
train_examples,
|
280 |
+
batch_size=args.batch_size,
|
281 |
+
shuffle=False,
|
282 |
+
collate_fn=collate_fn_batch_encoding,
|
283 |
+
)
|
284 |
+
valid_dataloader = DataLoader(
|
285 |
+
valid_examples,
|
286 |
+
batch_size=args.batch_size,
|
287 |
+
shuffle=False,
|
288 |
+
collate_fn=collate_fn_batch_encoding,
|
289 |
+
)
|
290 |
+
test_dataloader = DataLoader(
|
291 |
+
test_examples,
|
292 |
+
batch_size=args.batch_size,
|
293 |
+
shuffle=False,
|
294 |
+
collate_fn=collate_fn_batch_encoding,
|
295 |
+
)
|
296 |
+
print( f"dataset loaded: train-{len(train_examples)}; valid-{len(valid_examples)}; test-{len(test_examples)}")
|
297 |
+
|
298 |
+
x_train, y_train = get_feature(model, train_dataloader, args)
|
299 |
+
x_valid, y_valid = get_feature(model, valid_dataloader, args)
|
300 |
+
x_test, y_test = get_feature(model, test_dataloader, args)
|
301 |
+
|
302 |
+
# Save input feature to reduce encoding time
|
303 |
+
np.savez_compressed(
|
304 |
+
input_feat_file,
|
305 |
+
x_train=x_train,
|
306 |
+
y_train=y_train,
|
307 |
+
x_valid=x_valid,
|
308 |
+
y_valid=y_valid,
|
309 |
+
)
|
310 |
+
print(f"save input feature into {input_feat_file}")
|
311 |
+
# Save input feature to reduce encoding time
|
312 |
+
return x_train, y_train, x_valid, y_valid, x_test, y_test
|
313 |
+
|
314 |
+
|
315 |
+
def train(args):
|
316 |
+
# defining parameters
|
317 |
+
if args.save_model_path:
|
318 |
+
args.model_short = (
|
319 |
+
args.save_model_path.split("/")[-1]
|
320 |
+
)
|
321 |
+
print(f"model name {args.model_short}")
|
322 |
+
|
323 |
+
else:
|
324 |
+
args.model_short = (
|
325 |
+
args.disease_encoder_path.split("/")[-1]
|
326 |
+
)
|
327 |
+
print(f"model name {args.model_short}")
|
328 |
+
|
329 |
+
# disGeNET = DisGeNETProcessor()
|
330 |
+
disGeNET = DisGeNETProcessor(input_csv_path=args.input_csv_path)
|
331 |
+
|
332 |
+
|
333 |
+
x_train, y_train, x_valid, y_valid, x_test, y_test = encode_pretrained_feature(args, disGeNET)
|
334 |
+
|
335 |
+
print("train: ", x_train.shape, y_train.shape)
|
336 |
+
print("valid: ", x_valid.shape, y_valid.shape)
|
337 |
+
print("test: ", x_test.shape, y_test.shape)
|
338 |
+
|
339 |
+
params = {
|
340 |
+
"task": "train", # "predict" train
|
341 |
+
"boosting": "gbdt", # "The options are "gbdt" (traditional Gradient Boosting Decision Tree), "rf" (Random Forest), "dart" (Dropouts meet Multiple Additive Regression Trees), or "goss" (Gradient-based One-Side Sampling). The default is "gbdt"."
|
342 |
+
"objective": "binary",
|
343 |
+
"num_leaves": args.num_leaves,
|
344 |
+
"early_stopping_round": 30,
|
345 |
+
"max_depth": args.max_depth,
|
346 |
+
"learning_rate": args.lr,
|
347 |
+
"metric": "binary_logloss", #"metric": "l2","binary_logloss" "auc"
|
348 |
+
"verbose": 1,
|
349 |
+
}
|
350 |
+
|
351 |
+
lgb_train = lgb.Dataset(x_train, y_train)
|
352 |
+
lgb_valid = lgb.Dataset(x_valid, y_valid)
|
353 |
+
lgb_eval = lgb.Dataset(x_test, y_test, reference=lgb_train)
|
354 |
+
|
355 |
+
# fitting the model
|
356 |
+
model = lgb.train(
|
357 |
+
params, train_set=lgb_train, valid_sets=lgb_valid)
|
358 |
+
|
359 |
+
# prediction
|
360 |
+
valid_y_pred = model.predict(x_valid)
|
361 |
+
test_y_pred = model.predict(x_test)
|
362 |
+
|
363 |
+
# predict liver fibrosis
|
364 |
+
predictions_df = pd.DataFrame(test_y_pred, columns=["Prediction_score"])
|
365 |
+
# data_test = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test_tdc.csv')
|
366 |
+
data_test = pd.read_csv(args.input_csv_path)
|
367 |
+
predictions = pd.concat([data_test, predictions_df], axis=1)
|
368 |
+
# filtered_dataset = test_dataset_with_predictions[test_dataset_with_predictions['diseaseId'] == 'C0009714']
|
369 |
+
predictions.sort_values(by='Prediction_score', ascending=False, inplace=True)
|
370 |
+
top_100_predictions = predictions.head(100)
|
371 |
+
top_100_predictions.to_csv(args.output_csv_path, index=False)
|
372 |
+
|
373 |
+
# Accuracy
|
374 |
+
y_pred = model.predict(x_test, num_iteration=model.best_iteration)
|
375 |
+
y_pred[y_pred >= 0.5] = 1
|
376 |
+
y_pred[y_pred < 0.5] = 0
|
377 |
+
accuracy = accuracy_score(y_test, y_pred)
|
378 |
+
|
379 |
+
# AUC
|
380 |
+
valid_roc_auc_score = metrics.roc_auc_score(y_valid, valid_y_pred)
|
381 |
+
valid_average_precision_score = metrics.average_precision_score(
|
382 |
+
y_valid, valid_y_pred
|
383 |
+
)
|
384 |
+
test_roc_auc_score = metrics.roc_auc_score(y_test, test_y_pred)
|
385 |
+
test_average_precision_score = metrics.average_precision_score(y_test, test_y_pred)
|
386 |
+
|
387 |
+
# AUPR
|
388 |
+
valid_aupr = metrics.average_precision_score(y_valid, valid_y_pred)
|
389 |
+
test_aupr = metrics.average_precision_score(y_test, test_y_pred)
|
390 |
+
|
391 |
+
# Fmax
|
392 |
+
valid_precision, valid_recall, valid_thresholds = precision_recall_curve(y_valid, valid_y_pred)
|
393 |
+
valid_fmax = (2 * valid_precision * valid_recall / (valid_precision + valid_recall)).max()
|
394 |
+
test_precision, test_recall, test_thresholds = precision_recall_curve(y_test, test_y_pred)
|
395 |
+
test_fmax = (2 * test_precision * test_recall / (test_precision + test_recall)).max()
|
396 |
+
|
397 |
+
# F1
|
398 |
+
valid_f1 = f1_score(y_valid, valid_y_pred >= 0.5)
|
399 |
+
test_f1 = f1_score(y_test, test_y_pred >= 0.5)
|
400 |
+
|
401 |
+
|
402 |
+
if __name__ == "__main__":
|
403 |
+
args = parse_config()
|
404 |
+
if torch.cuda.is_available():
|
405 |
+
print("cuda is available.")
|
406 |
+
print(f"current device {args}.")
|
407 |
+
else:
|
408 |
+
args.device = "cpu"
|
409 |
+
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
|
410 |
+
random_str = "".join([random.choice(string.ascii_lowercase) for n in range(6)])
|
411 |
+
best_model_dir = (
|
412 |
+
f"{args.save_path_prefix}{args.save_name}_{timestamp_str}_{random_str}/"
|
413 |
+
)
|
414 |
+
os.makedirs(best_model_dir)
|
415 |
+
args.save_name = best_model_dir
|
416 |
+
train(args)
|
src/utils/downstream_disgenet.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from utils.data_loader import GDA_Dataset
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.model_selection import KFold
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
sys.path.append("../")
|
12 |
+
|
13 |
+
class DisGeNETProcessor:
|
14 |
+
def __init__(self,input_csv_path, data_dir="/nfs/dpa_pretrain/data/downstream/"):
|
15 |
+
train_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/train.csv')
|
16 |
+
valid_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/valid.csv')
|
17 |
+
test_data = pd.read_csv(input_csv_path)
|
18 |
+
|
19 |
+
# test_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/GDA_Data/test.csv')
|
20 |
+
# valid_data, test_data = train_test_split(valid_data, test_size=1/3, random_state=42)
|
21 |
+
# train_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/test/train.csv')
|
22 |
+
# valid_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/test/valid.csv')
|
23 |
+
|
24 |
+
|
25 |
+
# train_data = pd.read_csv('/nfs/dpa_pretrain/data/downstream/disgenet_finetune.csv')
|
26 |
+
# train_data, valid_data = train_test_split(train_data, test_size=0.2, random_state=42)
|
27 |
+
# valid_data, test_data = train_test_split(valid_data, test_size=1/3, random_state=42)
|
28 |
+
|
29 |
+
# alzheimer and stomach dataset use [["proteinSeq", "diseaseDes", "Y"]].dropna()
|
30 |
+
|
31 |
+
self.name = "DisGeNET"
|
32 |
+
self.train_dataset_df = train_data[["proteinSeq", "diseaseDes", "score"]].dropna()
|
33 |
+
self.val_dataset_df = valid_data[["proteinSeq", "diseaseDes", "score"]].dropna()
|
34 |
+
self.test_dataset_df = test_data[["proteinSeq", "diseaseDes", "score"]].dropna()
|
35 |
+
# self.test_dataset_df = test_data[["proteinSeq", "diseaseDes", "Y"]].dropna()
|
36 |
+
|
37 |
+
|
38 |
+
def get_train_examples(self, test=False):
|
39 |
+
"""get training examples
|
40 |
+
|
41 |
+
Args:
|
42 |
+
test (bool, optional): test can be int or bool. If test>1, will take test as the number of test examples. Defaults to False.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
_type_: _description_
|
46 |
+
"""
|
47 |
+
if test == 1: # Small testing set, to reduce the running time
|
48 |
+
return (
|
49 |
+
self.train_dataset_df["proteinSeq"].values[:4096],
|
50 |
+
self.train_dataset_df["diseaseDes"].values[:4096],
|
51 |
+
self.train_dataset_df["score"].values[:4096],
|
52 |
+
)
|
53 |
+
elif test > 1:
|
54 |
+
return (
|
55 |
+
self.train_dataset_df["proteinSeq"].values[:test],
|
56 |
+
self.train_dataset_df["diseaseDes"].values[:test],
|
57 |
+
self.train_dataset_df["score"].values[:test],
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
return GDA_Dataset( (
|
61 |
+
self.train_dataset_df["proteinSeq"].values,
|
62 |
+
self.train_dataset_df["diseaseDes"].values,
|
63 |
+
self.train_dataset_df["score"].values,
|
64 |
+
))
|
65 |
+
|
66 |
+
def get_val_examples(self, test=False):
|
67 |
+
"""get validation examples
|
68 |
+
|
69 |
+
Args:
|
70 |
+
test (bool, optional): test can be int or bool. If test>1, will take test as the number of test examples. Defaults to False.
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
_type_: _description_
|
74 |
+
|
75 |
+
"""
|
76 |
+
if test == 1: # Small testing set, to reduce the running time
|
77 |
+
return (
|
78 |
+
self.val_dataset_df["proteinSeq"].values[:1024],
|
79 |
+
self.val_dataset_df["diseaseDes"].values[:1024],
|
80 |
+
self.val_dataset_df["score"].values[:1024],
|
81 |
+
)
|
82 |
+
elif test > 1:
|
83 |
+
return (
|
84 |
+
self.val_dataset_df["proteinSeq"].values[:test],
|
85 |
+
self.val_dataset_df["diseaseDes"].values[:test],
|
86 |
+
self.val_dataset_df["score"].values[:test],
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
return GDA_Dataset((
|
90 |
+
self.val_dataset_df["proteinSeq"].values,
|
91 |
+
self.val_dataset_df["diseaseDes"].values,
|
92 |
+
self.val_dataset_df["score"].values,
|
93 |
+
))
|
94 |
+
|
95 |
+
# def get_test_examples(self, test=False):
|
96 |
+
# """get test examples
|
97 |
+
|
98 |
+
# Args:
|
99 |
+
# test (bool, optional): test can be int or bool. If test>1, will take test as the number of test examples. Defaults to False.
|
100 |
+
|
101 |
+
# Returns:
|
102 |
+
# _type_: _description_
|
103 |
+
# """
|
104 |
+
# if test == 1: # Small testing set, to reduce the running time
|
105 |
+
# return (
|
106 |
+
# self.test_dataset_df["proteinSeq"].values[:1024],
|
107 |
+
# self.test_dataset_df["diseaseDes"].values[:1024],
|
108 |
+
# self.test_dataset_df["Y"].values[:1024],
|
109 |
+
# )
|
110 |
+
# elif test > 1:
|
111 |
+
# return (
|
112 |
+
# self.test_dataset_df["proteinSeq"].values[:test],
|
113 |
+
# self.test_dataset_df["diseaseDes"].values[:test],
|
114 |
+
# self.test_dataset_df["Y"].values[:test],
|
115 |
+
# )
|
116 |
+
# else:
|
117 |
+
# return GDA_Dataset( (
|
118 |
+
# self.test_dataset_df["proteinSeq"].values,
|
119 |
+
# self.test_dataset_df["diseaseDes"].values,
|
120 |
+
# self.test_dataset_df["Y"].values,
|
121 |
+
# ))
|
122 |
+
def get_test_examples(self, test=False):
|
123 |
+
"""get test examples
|
124 |
+
|
125 |
+
Args:
|
126 |
+
test (bool, optional): test can be int or bool. If test>1, will take test as the number of test examples. Defaults to False.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
_type_: _description_
|
130 |
+
"""
|
131 |
+
if test == 1: # Small testing set, to reduce the running time
|
132 |
+
return (
|
133 |
+
self.test_dataset_df["proteinSeq"].values[:1024],
|
134 |
+
self.test_dataset_df["diseaseDes"].values[:1024],
|
135 |
+
self.test_dataset_df["score"].values[:1024],
|
136 |
+
)
|
137 |
+
elif test > 1:
|
138 |
+
return (
|
139 |
+
self.test_dataset_df["proteinSeq"].values[:test],
|
140 |
+
self.test_dataset_df["diseaseDes"].values[:test],
|
141 |
+
self.test_dataset_df["score"].values[:test],
|
142 |
+
)
|
143 |
+
else:
|
144 |
+
return GDA_Dataset( (
|
145 |
+
self.test_dataset_df["proteinSeq"].values,
|
146 |
+
self.test_dataset_df["diseaseDes"].values,
|
147 |
+
self.test_dataset_df["score"].values,
|
148 |
+
))
|
src/utils/metric_learning_models.py
ADDED
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
sys.path.append("../")
|
6 |
+
from pytorch_metric_learning.distances import CosineSimilarity
|
7 |
+
from pytorch_metric_learning.reducers import ThresholdReducer
|
8 |
+
from pytorch_metric_learning.regularizers import LpRegularizer
|
9 |
+
from pytorch_metric_learning import losses
|
10 |
+
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.nn import functional as F
|
15 |
+
from pytorch_metric_learning import losses, miners
|
16 |
+
from torch.cuda.amp import autocast
|
17 |
+
from torch.nn import Module
|
18 |
+
from tqdm import tqdm
|
19 |
+
from utils.gd_model import GDANet
|
20 |
+
from torch.nn import MultiheadAttention
|
21 |
+
|
22 |
+
from transformers import BertModel
|
23 |
+
from transformers import EsmModel, EsmConfig
|
24 |
+
|
25 |
+
LOGGER = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
class FusionModule(nn.Module):
|
28 |
+
def __init__(self, out_dim, num_head, dropout= 0.1):
|
29 |
+
super(FusionModule, self).__init__()
|
30 |
+
"""FusionModule.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
dropout= 0.1 is defaut
|
34 |
+
out_dim: model output dimension
|
35 |
+
num_head = 8: Multi-head Attention
|
36 |
+
"""
|
37 |
+
|
38 |
+
self.out_dim = out_dim
|
39 |
+
self.num_head = num_head
|
40 |
+
|
41 |
+
self.WqS = nn.Linear(out_dim, out_dim)
|
42 |
+
self.WkS = nn.Linear(out_dim, out_dim)
|
43 |
+
self.WvS = nn.Linear(out_dim, out_dim)
|
44 |
+
|
45 |
+
self.WqT = nn.Linear(out_dim, out_dim)
|
46 |
+
self.WkT = nn.Linear(out_dim, out_dim)
|
47 |
+
self.WvT = nn.Linear(out_dim, out_dim)
|
48 |
+
self.multi_head_attention = nn.MultiheadAttention(out_dim, num_head, dropout=dropout)
|
49 |
+
|
50 |
+
def forward(self, zs, zt):
|
51 |
+
# nn.MultiheadAttention The input representation is (token_length, batch_size, out_dim)
|
52 |
+
# zs = protein_representation.permute(1, 0, 2)
|
53 |
+
# zt = disease_representation.permute(1, 0, 2)
|
54 |
+
|
55 |
+
# Compute query, key and value representations
|
56 |
+
qs = self.WqS(zs)
|
57 |
+
ks = self.WkS(zs)
|
58 |
+
vs = self.WvS(zs)
|
59 |
+
|
60 |
+
qt = self.WqT(zt)
|
61 |
+
kt = self.WkT(zt)
|
62 |
+
vt = self.WvT(zt)
|
63 |
+
|
64 |
+
#self.multi_head_attention() The function returns two values: the representation and the attention weight matrix, computed after multiple attentions. In this case, we only care about the computed representation and not the attention weight matrix, so "_" is used to indicate that we do not intend to use or store the second return value.
|
65 |
+
zs_attention1, _ = self.multi_head_attention(qs, ks, vs)
|
66 |
+
zs_attention2, _ = self.multi_head_attention(qs, kt, vt)
|
67 |
+
zt_attention1, _ = self.multi_head_attention(qt, kt, vt)
|
68 |
+
zt_attention2, _ = self.multi_head_attention(qt, ks, vs)
|
69 |
+
|
70 |
+
protein_fused = 0.5 * (zs_attention1 + zs_attention2)
|
71 |
+
dis_fused = 0.5 * (zt_attention1 + zt_attention2)
|
72 |
+
|
73 |
+
return protein_fused, dis_fused
|
74 |
+
|
75 |
+
class CrossAttentionBlock(nn.Module):
|
76 |
+
|
77 |
+
def __init__(self, hidden_dim, num_heads):
|
78 |
+
super(CrossAttentionBlock, self).__init__()
|
79 |
+
if hidden_dim % num_heads != 0:
|
80 |
+
raise ValueError(
|
81 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
82 |
+
"heads (%d)" % (hidden_dim, num_heads))
|
83 |
+
self.hidden_dim = hidden_dim
|
84 |
+
self.num_heads = num_heads
|
85 |
+
self.head_size = hidden_dim // num_heads
|
86 |
+
|
87 |
+
self.query1 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
88 |
+
self.key1 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
89 |
+
self.value1 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
90 |
+
|
91 |
+
self.query2 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
92 |
+
self.key2 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
93 |
+
self.value2 = nn.Linear(hidden_dim, hidden_dim, bias=False)
|
94 |
+
|
95 |
+
def _alpha_from_logits(self, logits, mask_row, mask_col, inf=1e6):
|
96 |
+
N, L1, L2, H = logits.shape
|
97 |
+
mask_row = mask_row.view(N, L1, 1).repeat(1, 1, H)
|
98 |
+
mask_col = mask_col.view(N, L2, 1).repeat(1, 1, H)
|
99 |
+
mask_pair = torch.einsum('blh, bkh->blkh', mask_row, mask_col)
|
100 |
+
|
101 |
+
logits = torch.where(mask_pair, logits, logits - inf)
|
102 |
+
alpha = torch.softmax(logits, dim=2)
|
103 |
+
mask_row = mask_row.view(N, L1, 1, H).repeat(1, 1, L2, 1)
|
104 |
+
alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
|
105 |
+
return alpha
|
106 |
+
|
107 |
+
def _heads(self, x, n_heads, n_ch):
|
108 |
+
s = list(x.size())[:-1] + [n_heads, n_ch]
|
109 |
+
return x.view(*s)
|
110 |
+
|
111 |
+
def forward(self, input1, input2, mask1, mask2):
|
112 |
+
query1 = self._heads(self.query1(input1), self.num_heads, self.head_size)
|
113 |
+
key1 = self._heads(self.key1(input1), self.num_heads, self.head_size)
|
114 |
+
query2 = self._heads(self.query2(input2), self.num_heads, self.head_size)
|
115 |
+
key2 = self._heads(self.key2(input2), self.num_heads, self.head_size)
|
116 |
+
logits11 = torch.einsum('blhd, bkhd->blkh', query1, key1)
|
117 |
+
logits12 = torch.einsum('blhd, bkhd->blkh', query1, key2)
|
118 |
+
logits21 = torch.einsum('blhd, bkhd->blkh', query2, key1)
|
119 |
+
logits22 = torch.einsum('blhd, bkhd->blkh', query2, key2)
|
120 |
+
|
121 |
+
alpha11 = self._alpha_from_logits(logits11, mask1, mask1)
|
122 |
+
alpha12 = self._alpha_from_logits(logits12, mask1, mask2)
|
123 |
+
alpha21 = self._alpha_from_logits(logits21, mask2, mask1)
|
124 |
+
alpha22 = self._alpha_from_logits(logits22, mask2, mask2)
|
125 |
+
|
126 |
+
value1 = self._heads(self.value1(input1), self.num_heads, self.head_size)
|
127 |
+
value2 = self._heads(self.value2(input2), self.num_heads, self.head_size)
|
128 |
+
output1 = (torch.einsum('blkh, bkhd->blhd', alpha11, value1).flatten(-2) +
|
129 |
+
torch.einsum('blkh, bkhd->blhd', alpha12, value2).flatten(-2)) / 2
|
130 |
+
output2 = (torch.einsum('blkh, bkhd->blhd', alpha21, value1).flatten(-2) +
|
131 |
+
torch.einsum('blkh, bkhd->blhd', alpha22, value2).flatten(-2)) / 2
|
132 |
+
|
133 |
+
return output1, output2
|
134 |
+
|
135 |
+
class GDA_Metric_Learning(GDANet):
|
136 |
+
def __init__(
|
137 |
+
self, prot_encoder, disease_encoder, prot_out_dim, disease_out_dim, args
|
138 |
+
):
|
139 |
+
"""Constructor for the model.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
prot_encoder (_type_): Protein encoder.
|
143 |
+
disease_encoder (_type_): Disease Textual encoder.
|
144 |
+
prot_out_dim (_type_): Dimension of the Protein encoder.
|
145 |
+
disease_out_dim (_type_): Dimension of the Disease encoder.
|
146 |
+
args (_type_): _description_
|
147 |
+
"""
|
148 |
+
super(GDA_Metric_Learning, self).__init__(
|
149 |
+
prot_encoder,
|
150 |
+
disease_encoder,
|
151 |
+
)
|
152 |
+
self.prot_encoder = prot_encoder
|
153 |
+
self.disease_encoder = disease_encoder
|
154 |
+
self.loss = args.loss
|
155 |
+
self.use_miner = args.use_miner
|
156 |
+
self.miner_margin = args.miner_margin
|
157 |
+
self.agg_mode = args.agg_mode
|
158 |
+
self.prot_reg = nn.Linear(prot_out_dim, 1024)
|
159 |
+
# self.prot_reg = nn.Linear(prot_out_dim, disease_out_dim)
|
160 |
+
self.dis_reg = nn.Linear(disease_out_dim, 1024)
|
161 |
+
# self.prot_adapter_name = None
|
162 |
+
# self.disease_adapter_name = None
|
163 |
+
|
164 |
+
self.fusion_layer = FusionModule(1024, num_head=8)
|
165 |
+
self.cross_attention_layer = CrossAttentionBlock(1024, 8)
|
166 |
+
|
167 |
+
# # MMP Prediction Heads
|
168 |
+
# self.prot_pred_head = nn.Sequential(
|
169 |
+
# nn.Linear(disease_out_dim, disease_out_dim),
|
170 |
+
# nn.ReLU(),
|
171 |
+
# nn.Linear(disease_out_dim, 1280) #vocabulary size : prot model tokenize length 30 446
|
172 |
+
# )
|
173 |
+
# self.dise_pred_head = nn.Sequential(
|
174 |
+
# nn.Linear(disease_out_dim, disease_out_dim),
|
175 |
+
# nn.ReLU(),
|
176 |
+
# nn.Linear(disease_out_dim, 768) #vocabulary size : disease model tokenize length 30522
|
177 |
+
# )
|
178 |
+
|
179 |
+
if self.use_miner:
|
180 |
+
self.miner = miners.TripletMarginMiner(
|
181 |
+
margin=args.miner_margin, type_of_triplets="all"
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
self.miner = None
|
185 |
+
|
186 |
+
if self.loss == "ms_loss":
|
187 |
+
self.loss = losses.MultiSimilarityLoss(
|
188 |
+
alpha=2, beta=50, base=0.5
|
189 |
+
) # 1,2,3; 40,50,60
|
190 |
+
#1_40=1.5141 50=1.4988 60=1.4905 2_60=1.1786 50=1.1874 40=1.2008 3_40=1.1146 50=1.1012
|
191 |
+
elif self.loss == "circle_loss":
|
192 |
+
self.loss = losses.CircleLoss(
|
193 |
+
m=0.4, gamma=80
|
194 |
+
)
|
195 |
+
elif self.loss == "triplet_loss":
|
196 |
+
self.loss = losses.TripletMarginLoss(
|
197 |
+
margin=0.05, swap=False, smooth_loss=False,
|
198 |
+
triplets_per_anchor="all")
|
199 |
+
# distance = CosineSimilarity(),
|
200 |
+
# reducer = ThresholdReducer(high=0.3),
|
201 |
+
# embedding_regularizer = LpRegularizer() )
|
202 |
+
|
203 |
+
elif self.loss == "infoNCE":
|
204 |
+
self.loss = losses.NTXentLoss(
|
205 |
+
temperature=0.07
|
206 |
+
) # The MoCo paper uses 0.07, while SimCLR uses 0.5.
|
207 |
+
elif self.loss == "lifted_structure_loss":
|
208 |
+
self.loss = losses.LiftedStructureLoss(
|
209 |
+
neg_margin=1, pos_margin=0
|
210 |
+
)
|
211 |
+
elif self.loss == "nca_loss":
|
212 |
+
self.loss = losses.NCALoss(
|
213 |
+
softmax_scale=1
|
214 |
+
)
|
215 |
+
self.fusion = False
|
216 |
+
# self.stack = False
|
217 |
+
self.dropout = torch.nn.Dropout(args.dropout)
|
218 |
+
print("miner:", self.miner)
|
219 |
+
print("loss:", self.loss)
|
220 |
+
|
221 |
+
# def add_fusion(self):
|
222 |
+
# adapter_setup = Fuse("prot_adapter", "disease_adapter")
|
223 |
+
# self.prot_encoder.add_fusion(adapter_setup)
|
224 |
+
# self.prot_encoder.set_active_adapters(adapter_setup)
|
225 |
+
# self.prot_encoder.train_fusion(adapter_setup)
|
226 |
+
# self.disease_encoder.add_fusion(adapter_setup)
|
227 |
+
# self.disease_encoder.set_active_adapters(adapter_setup)
|
228 |
+
# self.disease_encoder.train_fusion(adapter_setup)
|
229 |
+
# self.fusion = True
|
230 |
+
|
231 |
+
# def add_stack_gda(self, reduction_factor):
|
232 |
+
# self.add_gda_adapters(reduction_factor=reduction_factor)
|
233 |
+
# # adapter_setup = Fuse("prot_adapter", "disease_adapter")
|
234 |
+
# self.prot_encoder.active_adapters = Stack(
|
235 |
+
# self.prot_adapter_name, self.gda_adapter_name
|
236 |
+
# )
|
237 |
+
# self.disease_encoder.active_adapters = Stack(
|
238 |
+
# self.disease_adapter_name, self.gda_adapter_name
|
239 |
+
# )
|
240 |
+
# print("stacked adapters loaded.")
|
241 |
+
# self.stack = True
|
242 |
+
|
243 |
+
# def load_adapters(
|
244 |
+
# self,
|
245 |
+
# prot_model_path,
|
246 |
+
# disease_model_path,
|
247 |
+
# prot_adapter_name="prot_adapter",
|
248 |
+
# disease_adapter_name="disease_adapter",
|
249 |
+
# ):
|
250 |
+
# if os.path.exists(prot_model_path):
|
251 |
+
# print(f"loading prot adapter from: {prot_model_path}")
|
252 |
+
# self.prot_adapter_name = prot_adapter_name
|
253 |
+
# self.prot_encoder.load_adapter(prot_model_path, load_as=prot_adapter_name)
|
254 |
+
# self.prot_encoder.set_active_adapters(prot_adapter_name)
|
255 |
+
# print(f"load protein adapters from: {prot_model_path} {prot_adapter_name}")
|
256 |
+
# else:
|
257 |
+
# print(f"{prot_model_path} not exits")
|
258 |
+
|
259 |
+
# if os.path.exists(disease_model_path):
|
260 |
+
# print(f"loading prot adapter from: {disease_model_path}")
|
261 |
+
# self.disease_adapter_name = disease_adapter_name
|
262 |
+
# self.disease_encoder.load_adapter(
|
263 |
+
# disease_model_path, load_as=disease_adapter_name
|
264 |
+
# )
|
265 |
+
# self.disease_encoder.set_active_adapters(disease_adapter_name)
|
266 |
+
# print(
|
267 |
+
# f"load disease adapters from: {disease_model_path} {disease_adapter_name}"
|
268 |
+
# )
|
269 |
+
# else:
|
270 |
+
# print(f"{disease_model_path} not exits")
|
271 |
+
|
272 |
+
def non_adapters(
|
273 |
+
self,
|
274 |
+
prot_model_path,
|
275 |
+
disease_model_path,
|
276 |
+
|
277 |
+
):
|
278 |
+
if os.path.exists(prot_model_path):
|
279 |
+
# Load the entire model for prot_model
|
280 |
+
prot_model = torch.load(prot_model_path)
|
281 |
+
# Set the prot_encoder to the loaded model
|
282 |
+
self.prot_encoder = prot_model.prot_encoder
|
283 |
+
print(f"load protein from: {prot_model_path}")
|
284 |
+
else:
|
285 |
+
print(f"{prot_model_path} not exits")
|
286 |
+
|
287 |
+
if os.path.exists(disease_model_path):
|
288 |
+
# Load the entire model for disease_model
|
289 |
+
disease_model = torch.load(disease_model_path)
|
290 |
+
# Set the disease_encoder to the loaded model
|
291 |
+
self.disease_encoder = disease_model.disease_encoder
|
292 |
+
print(f"load disease from: {disease_model_path}")
|
293 |
+
|
294 |
+
else:
|
295 |
+
print(f"{disease_model_path} not exits")
|
296 |
+
|
297 |
+
|
298 |
+
# def add_gda_adapters(
|
299 |
+
# self,
|
300 |
+
# gda_adapter_name="gda_adapter",
|
301 |
+
# reduction_factor=16,
|
302 |
+
# ):
|
303 |
+
# """Initialise adapters
|
304 |
+
|
305 |
+
# Args:
|
306 |
+
# prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
|
307 |
+
# disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
|
308 |
+
# reduction_factor (int, optional): _description_. Defaults to 16.
|
309 |
+
# """
|
310 |
+
# adapter_config = AdapterConfig.load(
|
311 |
+
# "pfeiffer", reduction_factor=reduction_factor
|
312 |
+
# )
|
313 |
+
# self.gda_adapter_name = gda_adapter_name
|
314 |
+
# self.prot_encoder.add_adapter(gda_adapter_name, config=adapter_config)
|
315 |
+
# self.prot_encoder.train_adapter([gda_adapter_name])
|
316 |
+
# self.disease_encoder.add_adapter(gda_adapter_name, config=adapter_config)
|
317 |
+
# self.disease_encoder.train_adapter([gda_adapter_name])
|
318 |
+
|
319 |
+
# def init_adapters(
|
320 |
+
# self,
|
321 |
+
# prot_adapter_name="gda_prot_adapter",
|
322 |
+
# disease_adapter_name="gda_disease_adapter",
|
323 |
+
# reduction_factor=16,
|
324 |
+
# ):
|
325 |
+
# """Initialise adapters
|
326 |
+
|
327 |
+
# Args:
|
328 |
+
# prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
|
329 |
+
# disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
|
330 |
+
# reduction_factor (int, optional): _description_. Defaults to 16.
|
331 |
+
# """
|
332 |
+
# adapter_config = AdapterConfig.load(
|
333 |
+
# "pfeiffer", reduction_factor=reduction_factor
|
334 |
+
# )
|
335 |
+
|
336 |
+
# self.prot_adapter_name = prot_adapter_name
|
337 |
+
# self.disease_adapter_name = disease_adapter_name
|
338 |
+
# self.prot_encoder.add_adapter(prot_adapter_name, config=adapter_config)
|
339 |
+
# self.prot_encoder.train_adapter([prot_adapter_name])
|
340 |
+
# self.disease_encoder.add_adapter(disease_adapter_name, config=adapter_config)
|
341 |
+
# self.disease_encoder.train_adapter([disease_adapter_name])
|
342 |
+
# print(f"adapter modules initialized")
|
343 |
+
|
344 |
+
# def save_adapters(self, save_path_prefix, total_step):
|
345 |
+
# """Save adapters into file.
|
346 |
+
|
347 |
+
# Args:
|
348 |
+
# save_path_prefix (string): saving path prefix.
|
349 |
+
# total_step (int): total step number.
|
350 |
+
# """
|
351 |
+
# prot_save_dir = os.path.join(
|
352 |
+
# save_path_prefix, f"prot_adapter_step_{total_step}"
|
353 |
+
# )# adapter
|
354 |
+
# disease_save_dir = os.path.join(
|
355 |
+
# save_path_prefix, f"disease_adapter_step_{total_step}"
|
356 |
+
# )
|
357 |
+
# os.makedirs(prot_save_dir, exist_ok=True)
|
358 |
+
# os.makedirs(disease_save_dir, exist_ok=True)
|
359 |
+
# self.prot_encoder.save_adapter(prot_save_dir, self.prot_adapter_name)
|
360 |
+
# prot_head_save_path = os.path.join(prot_save_dir, "prot_head.bin")
|
361 |
+
# torch.save(self.prot_reg, prot_head_save_path)
|
362 |
+
# self.disease_encoder.save_adapter(disease_save_dir, self.disease_adapter_name)
|
363 |
+
# disease_head_save_path = os.path.join(prot_save_dir, "disease_head.bin")
|
364 |
+
# torch.save(self.prot_reg, disease_head_save_path)
|
365 |
+
# if self.fusion:
|
366 |
+
# self.prot_encoder.save_all_adapters(prot_save_dir)
|
367 |
+
# self.disease_encoder.save_all_adapters(disease_save_dir)
|
368 |
+
|
369 |
+
def predict(self, query_toks1, query_toks2):
|
370 |
+
"""
|
371 |
+
query : (N, h), candidates : (N, topk, h)
|
372 |
+
output : (N, topk)
|
373 |
+
"""
|
374 |
+
# Extract input_ids and attention_mask for protein
|
375 |
+
prot_input_ids = query_toks1["input_ids"]
|
376 |
+
prot_attention_mask = query_toks1["attention_mask"]
|
377 |
+
|
378 |
+
# Extract input_ids and attention_mask for dis
|
379 |
+
dis_input_ids = query_toks2["input_ids"]
|
380 |
+
dis_attention_mask = query_toks2["attention_mask"]
|
381 |
+
|
382 |
+
# Process inputs through encoders
|
383 |
+
last_hidden_state1 = self.prot_encoder(
|
384 |
+
input_ids=prot_input_ids, attention_mask=prot_attention_mask, return_dict=True
|
385 |
+
).last_hidden_state
|
386 |
+
last_hidden_state1 = self.prot_reg(last_hidden_state1)
|
387 |
+
|
388 |
+
last_hidden_state2 = self.disease_encoder(
|
389 |
+
input_ids=dis_input_ids, attention_mask=dis_attention_mask, return_dict=True
|
390 |
+
).last_hidden_state
|
391 |
+
last_hidden_state2 = self.dis_reg(last_hidden_state2)
|
392 |
+
# Apply the cross-attention layer
|
393 |
+
prot_fused, dis_fused = self.cross_attention_layer(
|
394 |
+
last_hidden_state1, last_hidden_state2, prot_attention_mask, dis_attention_mask
|
395 |
+
)
|
396 |
+
|
397 |
+
# last_hidden_state1 = self.prot_encoder(
|
398 |
+
# query_toks1, return_dict=True
|
399 |
+
# ).last_hidden_state
|
400 |
+
# last_hidden_state1 = self.prot_reg(
|
401 |
+
# last_hidden_state1
|
402 |
+
# ) # transform the prot embedding into the same dimension as the disease embedding
|
403 |
+
# last_hidden_state2 = self.disease_encoder(
|
404 |
+
# query_toks2, return_dict=True
|
405 |
+
# ).last_hidden_state
|
406 |
+
# last_hidden_state2 = self.dis_reg(
|
407 |
+
# last_hidden_state2
|
408 |
+
# ) # transform the disease embedding into 1024
|
409 |
+
|
410 |
+
# Apply the fusion layer and Recovery of representational shape
|
411 |
+
# prot_fused, dis_fused = self.fusion_layer(last_hidden_state1, last_hidden_state2)
|
412 |
+
|
413 |
+
if self.agg_mode == "cls":
|
414 |
+
query_embed1 = prot_fused[:, 0] # query : [batch_size, hidden]
|
415 |
+
query_embed2 = dis_fused[:, 0] # query : [batch_size, hidden]
|
416 |
+
elif self.agg_mode == "mean_all_tok":
|
417 |
+
query_embed1 = prot_fused.mean(1) # query : [batch_size, hidden]
|
418 |
+
query_embed2 = dis_fused.mean(1) # query : [batch_size, hidden]
|
419 |
+
elif self.agg_mode == "mean":
|
420 |
+
query_embed1 = (
|
421 |
+
prot_fused * query_toks1["attention_mask"].unsqueeze(-1)
|
422 |
+
).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
|
423 |
+
query_embed2 = (
|
424 |
+
dis_fused * query_toks2["attention_mask"].unsqueeze(-1)
|
425 |
+
).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
|
426 |
+
else:
|
427 |
+
raise NotImplementedError()
|
428 |
+
|
429 |
+
query_embed = torch.cat([query_embed1, query_embed2], dim=1)
|
430 |
+
return query_embed
|
431 |
+
|
432 |
+
def forward(self, query_toks1, query_toks2, labels):
|
433 |
+
"""
|
434 |
+
query : (N, h), candidates : (N, topk, h)
|
435 |
+
output : (N, topk)
|
436 |
+
"""
|
437 |
+
# Extract input_ids and attention_mask for protein
|
438 |
+
prot_input_ids = query_toks1["input_ids"]
|
439 |
+
prot_attention_mask = query_toks1["attention_mask"]
|
440 |
+
|
441 |
+
# Extract input_ids and attention_mask for dis
|
442 |
+
dis_input_ids = query_toks2["input_ids"]
|
443 |
+
dis_attention_mask = query_toks2["attention_mask"]
|
444 |
+
|
445 |
+
# Process inputs through encoders
|
446 |
+
last_hidden_state1 = self.prot_encoder(
|
447 |
+
input_ids=prot_input_ids, attention_mask=prot_attention_mask, return_dict=True
|
448 |
+
).last_hidden_state
|
449 |
+
last_hidden_state1 = self.prot_reg(last_hidden_state1)
|
450 |
+
|
451 |
+
last_hidden_state2 = self.disease_encoder(
|
452 |
+
input_ids=dis_input_ids, attention_mask=dis_attention_mask, return_dict=True
|
453 |
+
).last_hidden_state
|
454 |
+
last_hidden_state2 = self.dis_reg(last_hidden_state2)
|
455 |
+
# Apply the cross-attention layer
|
456 |
+
prot_fused, dis_fused = self.cross_attention_layer(
|
457 |
+
last_hidden_state1, last_hidden_state2, prot_attention_mask, dis_attention_mask
|
458 |
+
)
|
459 |
+
# last_hidden_state1 = self.prot_encoder(
|
460 |
+
# query_toks1, return_dict=True
|
461 |
+
# ).last_hidden_state
|
462 |
+
|
463 |
+
# last_hidden_state1 = self.prot_reg(
|
464 |
+
# last_hidden_state1
|
465 |
+
# ) # transform the prot embedding into the same dimension as the disease embedding
|
466 |
+
# last_hidden_state2 = self.disease_encoder(
|
467 |
+
# query_toks2, return_dict=True
|
468 |
+
# ).last_hidden_state
|
469 |
+
# last_hidden_state2 = self.dis_reg(
|
470 |
+
# last_hidden_state2
|
471 |
+
# ) # transform the disease embedding into 1024
|
472 |
+
|
473 |
+
# # Apply the fusion layer and Recovery of representational shape
|
474 |
+
# prot_fused, dis_fused = self.fusion_layer(last_hidden_state1, last_hidden_state2)
|
475 |
+
if self.agg_mode == "cls":
|
476 |
+
query_embed1 = prot_pred[:, 0] # query : [batch_size, hidden]
|
477 |
+
query_embed2 = dise_pred[:, 0] # query : [batch_size, hidden]
|
478 |
+
elif self.agg_mode == "mean_all_tok":
|
479 |
+
query_embed1 = prot_fused.mean(1) # query : [batch_size, hidden]
|
480 |
+
query_embed2 = dis_fused.mean(1) # query : [batch_size, hidden]
|
481 |
+
elif self.agg_mode == "mean":
|
482 |
+
query_embed1 = (
|
483 |
+
prot_pred * query_toks1["attention_mask"].unsqueeze(-1)
|
484 |
+
).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
|
485 |
+
query_embed2 = (
|
486 |
+
dis_fused * query_toks2["attention_mask"].unsqueeze(-1)
|
487 |
+
).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
|
488 |
+
else:
|
489 |
+
raise NotImplementedError()
|
490 |
+
|
491 |
+
# print("query_embed1 =", query_embed1.shape, "query_embed2 =", query_embed2.shape)
|
492 |
+
query_embed = torch.cat([query_embed1, query_embed2], dim=0)
|
493 |
+
# print("query_embed =", len(query_embed))
|
494 |
+
|
495 |
+
labels = torch.cat([torch.arange(len(labels)), torch.arange(len(labels))], dim=0)
|
496 |
+
|
497 |
+
if self.use_miner:
|
498 |
+
hard_pairs = self.miner(query_embed, labels)
|
499 |
+
return self.loss(query_embed, labels, hard_pairs)# + loss_mmp
|
500 |
+
else:
|
501 |
+
loss = self.loss(query_embed, labels)# + loss_mmp
|
502 |
+
# print('loss :', loss)
|
503 |
+
return loss
|
504 |
+
|
505 |
+
def get_embeddings(self, mentions, batch_size=1024):
|
506 |
+
"""
|
507 |
+
Compute all embeddings from mention tokens.
|
508 |
+
"""
|
509 |
+
embedding_table = []
|
510 |
+
with torch.no_grad():
|
511 |
+
for start in tqdm(range(0, len(mentions), batch_size)):
|
512 |
+
end = min(start + batch_size, len(mentions))
|
513 |
+
batch = mentions[start:end]
|
514 |
+
batch_embedding = self.vectorizer(batch)
|
515 |
+
batch_embedding = batch_embedding.cpu()
|
516 |
+
embedding_table.append(batch_embedding)
|
517 |
+
embedding_table = torch.cat(embedding_table, dim=0)
|
518 |
+
return embedding_table
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
class DDA_Metric_Learning(Module):
|
523 |
+
def __init__(self, disease_encoder, args):
|
524 |
+
"""Constructor for the model.
|
525 |
+
|
526 |
+
Args:
|
527 |
+
disease_encoder (_type_): disease encoder.
|
528 |
+
args (_type_): _description_
|
529 |
+
"""
|
530 |
+
super(DDA_Metric_Learning, self).__init__()
|
531 |
+
self.disease_encoder = disease_encoder
|
532 |
+
self.loss = args.loss
|
533 |
+
self.use_miner = args.use_miner
|
534 |
+
self.miner_margin = args.miner_margin
|
535 |
+
self.agg_mode = args.agg_mode
|
536 |
+
self.disease_adapter_name = None
|
537 |
+
if self.use_miner:
|
538 |
+
self.miner = miners.TripletMarginMiner(
|
539 |
+
margin=args.miner_margin, type_of_triplets="all"
|
540 |
+
)
|
541 |
+
else:
|
542 |
+
self.miner = None
|
543 |
+
|
544 |
+
if self.loss == "ms_loss":
|
545 |
+
self.loss = losses.MultiSimilarityLoss(
|
546 |
+
alpha=1, beta=60, base=0.5
|
547 |
+
) # 1,2,3; 40,50,60
|
548 |
+
elif self.loss == "circle_loss":
|
549 |
+
self.loss = losses.CircleLoss()
|
550 |
+
elif self.loss == "triplet_loss":
|
551 |
+
self.loss = losses.TripletMarginLoss()
|
552 |
+
elif self.loss == "infoNCE":
|
553 |
+
self.loss = losses.NTXentLoss(
|
554 |
+
temperature=0.07
|
555 |
+
) # The MoCo paper uses 0.07, while SimCLR uses 0.5.
|
556 |
+
elif self.loss == "lifted_structure_loss":
|
557 |
+
self.loss = losses.LiftedStructureLoss()
|
558 |
+
elif self.loss == "nca_loss":
|
559 |
+
self.loss = losses.NCALoss()
|
560 |
+
self.reg = None
|
561 |
+
self.cls = None
|
562 |
+
self.dropout = torch.nn.Dropout(args.dropout)
|
563 |
+
print("miner:", self.miner)
|
564 |
+
print("loss:", self.loss)
|
565 |
+
|
566 |
+
def add_classification_head(self, disease_out_dim=768, out_dim=2):
|
567 |
+
"""Add regression head.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
disease_out_dim (_type_): disease encoder output dimension.
|
571 |
+
out_dim (int, optional): output dimension. Defaults to 2.
|
572 |
+
drop_out (int, optional): dropout rate. Defaults to 0.
|
573 |
+
"""
|
574 |
+
self.cls = nn.Linear(disease_out_dim * 2, out_dim)
|
575 |
+
|
576 |
+
def load_disease_adapter(
|
577 |
+
self,
|
578 |
+
disease_model_path,
|
579 |
+
disease_adapter_name="disease_adapter",
|
580 |
+
):
|
581 |
+
if os.path.exists(disease_model_path):
|
582 |
+
self.disease_adapter_name = disease_adapter_name
|
583 |
+
self.disease_encoder.load_adapter(
|
584 |
+
disease_model_path, load_as=disease_adapter_name
|
585 |
+
)
|
586 |
+
self.disease_encoder.set_active_adapters(disease_adapter_name)
|
587 |
+
print(
|
588 |
+
f"load disease adapters from: {disease_model_path} {disease_adapter_name}"
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
print(f"{disease_adapter_name} not exits")
|
592 |
+
|
593 |
+
def init_adapters(
|
594 |
+
self,
|
595 |
+
disease_adapter_name="disease_adapter",
|
596 |
+
reduction_factor=16,
|
597 |
+
):
|
598 |
+
"""Initialise adapters
|
599 |
+
|
600 |
+
Args:
|
601 |
+
disease_adapter_name (str, optional): _description_. Defaults to "disease_adapter".
|
602 |
+
reduction_factor (int, optional): _description_. Defaults to 16.
|
603 |
+
"""
|
604 |
+
adapter_config = AdapterConfig.load(
|
605 |
+
"pfeiffer", reduction_factor=reduction_factor
|
606 |
+
)
|
607 |
+
self.disease_adapter_name = disease_adapter_name
|
608 |
+
self.disease_encoder.add_adapter(disease_adapter_name, config=adapter_config)
|
609 |
+
self.disease_encoder.train_adapter([disease_adapter_name])
|
610 |
+
|
611 |
+
def save_adapters(self, save_path_prefix, total_step):
|
612 |
+
"""Save adapters into file.
|
613 |
+
|
614 |
+
Args:
|
615 |
+
save_path_prefix (string): saving path prefix.
|
616 |
+
total_step (int): total step number.
|
617 |
+
"""
|
618 |
+
disease_save_dir = os.path.join(
|
619 |
+
save_path_prefix, f"disease_adapter_step_{total_step}"
|
620 |
+
)
|
621 |
+
os.makedirs(disease_save_dir, exist_ok=True)
|
622 |
+
self.disease_encoder.save_adapter(disease_save_dir, self.disease_adapter_name)
|
623 |
+
|
624 |
+
def predict(self, x1, x2):
|
625 |
+
"""
|
626 |
+
query : (N, h), candidates : (N, topk, h)
|
627 |
+
output : (N, topk)
|
628 |
+
|
629 |
+
"""
|
630 |
+
if self.agg_mode == "cls":
|
631 |
+
x1 = self.disease_encoder(x1).last_hidden_state[:, 0]
|
632 |
+
x2 = self.disease_encoder(x2).last_hidden_state[:, 0]
|
633 |
+
x = torch.cat((x1, x2), 1)
|
634 |
+
return x
|
635 |
+
else:
|
636 |
+
x1 = self.disease_encoder(x1).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
637 |
+
x2 = self.disease_encoder(x2).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
638 |
+
x = torch.cat((x1, x2), 1)
|
639 |
+
return x
|
640 |
+
|
641 |
+
def module_predict(self, x1, x2):
|
642 |
+
"""
|
643 |
+
query : (N, h), candidates : (N, topk, h)
|
644 |
+
output : (N, topk)
|
645 |
+
|
646 |
+
"""
|
647 |
+
if self.agg_mode == "cls":
|
648 |
+
x1 = self.disease_encoder.module(x1).last_hidden_state[:, 0]
|
649 |
+
x2 = self.disease_encoder.module(x2).last_hidden_state[:, 0]
|
650 |
+
x = torch.cat((x1, x2), 1)
|
651 |
+
return x
|
652 |
+
else:
|
653 |
+
x1 = self.disease_encoder.module(x1).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
654 |
+
x2 = self.disease_encoder.module(x2).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
655 |
+
x = torch.cat((x1, x2), 1)
|
656 |
+
return x
|
657 |
+
|
658 |
+
@autocast()
|
659 |
+
def forward(self, query_toks1, query_toks2, labels):
|
660 |
+
"""
|
661 |
+
query : (N, h), candidates : (N, topk, h)
|
662 |
+
output : (N, topk)
|
663 |
+
"""
|
664 |
+
last_hidden_state1 = self.disease_encoder(
|
665 |
+
**query_toks1, return_dict=True
|
666 |
+
).last_hidden_state
|
667 |
+
last_hidden_state2 = self.disease_encoder(
|
668 |
+
**query_toks2, return_dict=True
|
669 |
+
).last_hidden_state
|
670 |
+
if self.agg_mode == "cls":
|
671 |
+
query_embed1 = last_hidden_state1[:, 0] # query : [batch_size, hidden]
|
672 |
+
query_embed2 = last_hidden_state2[:, 0] # query : [batch_size, hidden]
|
673 |
+
elif self.agg_mode == "mean_all_tok":
|
674 |
+
query_embed1 = last_hidden_state1.mean(1) # query : [batch_size, hidden]
|
675 |
+
query_embed2 = last_hidden_state2.mean(1) # query : [batch_size, hidden]
|
676 |
+
elif self.agg_mode == "mean":
|
677 |
+
query_embed1 = (
|
678 |
+
last_hidden_state1 * query_toks1["attention_mask"].unsqueeze(-1)
|
679 |
+
).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
|
680 |
+
query_embed2 = (
|
681 |
+
last_hidden_state2 * query_toks2["attention_mask"].unsqueeze(-1)
|
682 |
+
).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
|
683 |
+
else:
|
684 |
+
raise NotImplementedError()
|
685 |
+
query_embed = torch.cat([query_embed1, query_embed2], dim=0)
|
686 |
+
|
687 |
+
labels = torch.cat([labels, labels], dim=0)
|
688 |
+
if self.use_miner:
|
689 |
+
hard_pairs = self.miner(query_embed, labels)
|
690 |
+
print('miner used')
|
691 |
+
return self.loss(query_embed, labels, hard_pairs)
|
692 |
+
else:
|
693 |
+
print('no miner')
|
694 |
+
return self.loss(query_embed, labels)
|
695 |
+
|
696 |
+
|
697 |
+
class PPI_Metric_Learning(Module):
|
698 |
+
def __init__(self, prot_encoder, args):
|
699 |
+
"""Constructor for the model.
|
700 |
+
|
701 |
+
Args:
|
702 |
+
prot_encoder (_type_): Protein encoder.
|
703 |
+
prot_encoder (_type_): prot Textual encoder.
|
704 |
+
prot_out_dim (_type_): Dimension of the Protein encoder.
|
705 |
+
prot_out_dim (_type_): Dimension of the prot encoder.
|
706 |
+
args (_type_): _description_
|
707 |
+
"""
|
708 |
+
super(PPI_Metric_Learning, self).__init__()
|
709 |
+
self.prot_encoder = prot_encoder
|
710 |
+
self.loss = args.loss
|
711 |
+
self.use_miner = args.use_miner
|
712 |
+
self.miner_margin = args.miner_margin
|
713 |
+
self.agg_mode = args.agg_mode
|
714 |
+
self.prot_adapter_name = None
|
715 |
+
if self.use_miner:
|
716 |
+
self.miner = miners.TripletMarginMiner(
|
717 |
+
margin=args.miner_margin, type_of_triplets="all"
|
718 |
+
)
|
719 |
+
else:
|
720 |
+
self.miner = None
|
721 |
+
|
722 |
+
if self.loss == "ms_loss":
|
723 |
+
self.loss = losses.MultiSimilarityLoss(
|
724 |
+
alpha=1, beta=60, base=0.5
|
725 |
+
) # 1,2,3; 40,50,60
|
726 |
+
elif self.loss == "circle_loss":
|
727 |
+
self.loss = losses.CircleLoss()
|
728 |
+
elif self.loss == "triplet_loss":
|
729 |
+
self.loss = losses.TripletMarginLoss()
|
730 |
+
elif self.loss == "infoNCE":
|
731 |
+
self.loss = losses.NTXentLoss(
|
732 |
+
temperature=0.07
|
733 |
+
) # The MoCo paper uses 0.07, while SimCLR uses 0.5.
|
734 |
+
elif self.loss == "lifted_structure_loss":
|
735 |
+
self.loss = losses.LiftedStructureLoss()
|
736 |
+
elif self.loss == "nca_loss":
|
737 |
+
self.loss = losses.NCALoss()
|
738 |
+
self.reg = None
|
739 |
+
self.cls = None
|
740 |
+
self.dropout = torch.nn.Dropout(args.dropout)
|
741 |
+
print("miner:", self.miner)
|
742 |
+
print("loss:", self.loss)
|
743 |
+
|
744 |
+
def add_classification_head(self, prot_out_dim=1024, out_dim=2):
|
745 |
+
"""Add regression head.
|
746 |
+
|
747 |
+
Args:
|
748 |
+
prot_out_dim (_type_): protein encoder output dimension.
|
749 |
+
disease_out_dim (_type_): disease encoder output dimension.
|
750 |
+
out_dim (int, optional): output dimension. Defaults to 2.
|
751 |
+
drop_out (int, optional): dropout rate. Defaults to 0.
|
752 |
+
"""
|
753 |
+
self.cls = nn.Linear(prot_out_dim + prot_out_dim, out_dim)
|
754 |
+
|
755 |
+
def load_prot_adapter(
|
756 |
+
self,
|
757 |
+
prot_model_path,
|
758 |
+
prot_adapter_name="prot_adapter",
|
759 |
+
):
|
760 |
+
if os.path.exists(prot_model_path):
|
761 |
+
self.prot_adapter_name = prot_adapter_name
|
762 |
+
self.prot_encoder.load_adapter(prot_model_path, load_as=prot_adapter_name)
|
763 |
+
self.prot_encoder.set_active_adapters(prot_adapter_name)
|
764 |
+
print(f"load protein adapters from: {prot_model_path} {prot_adapter_name}")
|
765 |
+
else:
|
766 |
+
print(f"{prot_model_path} not exits")
|
767 |
+
|
768 |
+
def init_adapters(
|
769 |
+
self,
|
770 |
+
prot_adapter_name="prot_adapter",
|
771 |
+
reduction_factor=16,
|
772 |
+
):
|
773 |
+
"""Initialise adapters
|
774 |
+
|
775 |
+
Args:
|
776 |
+
prot_adapter_name (str, optional): _description_. Defaults to "prot_adapter".
|
777 |
+
reduction_factor (int, optional): _description_. Defaults to 16.
|
778 |
+
"""
|
779 |
+
adapter_config = AdapterConfig.load(
|
780 |
+
"pfeiffer", reduction_factor=reduction_factor
|
781 |
+
)
|
782 |
+
self.prot_adapter_name = prot_adapter_name
|
783 |
+
self.prot_encoder.add_adapter(prot_adapter_name, config=adapter_config)
|
784 |
+
self.prot_encoder.train_adapter([prot_adapter_name])
|
785 |
+
|
786 |
+
def save_adapters(self, save_path_prefix, total_step):
|
787 |
+
"""Save adapters into file.
|
788 |
+
|
789 |
+
Args:
|
790 |
+
save_path_prefix (string): saving path prefix.
|
791 |
+
total_step (int): total step number.
|
792 |
+
"""
|
793 |
+
prot_save_dir = os.path.join(
|
794 |
+
save_path_prefix, f"prot_adapter_step_{total_step}"
|
795 |
+
)
|
796 |
+
os.makedirs(prot_save_dir, exist_ok=True)
|
797 |
+
self.prot_encoder.save_adapter(prot_save_dir, self.prot_adapter_name)
|
798 |
+
|
799 |
+
def predict(self, x1, x2):
|
800 |
+
"""
|
801 |
+
query : (N, h), candidates : (N, topk, h)
|
802 |
+
output : (N, topk)
|
803 |
+
|
804 |
+
"""
|
805 |
+
|
806 |
+
if self.agg_mode == "cls":
|
807 |
+
x1 = self.prot_encoder(x1).last_hidden_state[:, 0]
|
808 |
+
x2 = self.prot_encoder(x2).last_hidden_state[:, 0]
|
809 |
+
x = torch.cat((x1, x2), 1)
|
810 |
+
return x
|
811 |
+
else:
|
812 |
+
x1 = self.prot_encoder(x1).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
813 |
+
x2 = self.prot_encoder(x2).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
814 |
+
x = torch.cat((x1, x2), 1)
|
815 |
+
return x
|
816 |
+
|
817 |
+
def module_predict(self, x1, x2):
|
818 |
+
"""
|
819 |
+
query : (N, h), candidates : (N, topk, h)
|
820 |
+
output : (N, topk)
|
821 |
+
|
822 |
+
"""
|
823 |
+
if self.agg_mode == "cls":
|
824 |
+
x1 = self.prot_encoder.module(x1).last_hidden_state[:, 0]
|
825 |
+
x2 = self.prot_encoder.module(x2).last_hidden_state[:, 0]
|
826 |
+
x = torch.cat((x1, x2), 1)
|
827 |
+
return x
|
828 |
+
else:
|
829 |
+
x1 = self.prot_encoder.module(x1).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
830 |
+
x2 = self.prot_encoder.module(x2).last_hidden_state.mean(1) # query : [batch_size, hidden]
|
831 |
+
x = torch.cat((x1, x2), 1)
|
832 |
+
return x
|
833 |
+
|
834 |
+
@autocast()
|
835 |
+
def forward(self, query_toks1, query_toks2, labels):
|
836 |
+
"""
|
837 |
+
query : (N, h), candidates : (N, topk, h)
|
838 |
+
output : (N, topk)
|
839 |
+
"""
|
840 |
+
last_hidden_state1 = self.prot_encoder(
|
841 |
+
**query_toks1, return_dict=True
|
842 |
+
).last_hidden_state
|
843 |
+
last_hidden_state2 = self.prot_encoder(
|
844 |
+
**query_toks2, return_dict=True
|
845 |
+
).last_hidden_state
|
846 |
+
if self.agg_mode == "cls":
|
847 |
+
query_embed1 = last_hidden_state1[:, 0] # query : [batch_size, hidden]
|
848 |
+
query_embed2 = last_hidden_state2[:, 0] # query : [batch_size, hidden]
|
849 |
+
elif self.agg_mode == "mean_all_tok":
|
850 |
+
query_embed1 = last_hidden_state1.mean(1) # query : [batch_size, hidden]
|
851 |
+
query_embed2 = last_hidden_state2.mean(1) # query : [batch_size, hidden]
|
852 |
+
elif self.agg_mode == "mean":
|
853 |
+
query_embed1 = (
|
854 |
+
last_hidden_state1 * query_toks1["attention_mask"].unsqueeze(-1)
|
855 |
+
).sum(1) / query_toks1["attention_mask"].sum(-1).unsqueeze(-1)
|
856 |
+
query_embed2 = (
|
857 |
+
last_hidden_state2 * query_toks2["attention_mask"].unsqueeze(-1)
|
858 |
+
).sum(1) / query_toks2["attention_mask"].sum(-1).unsqueeze(-1)
|
859 |
+
else:
|
860 |
+
raise NotImplementedError()
|
861 |
+
query_embed = torch.cat([query_embed1, query_embed2], dim=0)
|
862 |
+
|
863 |
+
labels = torch.cat([labels, labels], dim=0)
|
864 |
+
if self.use_miner:
|
865 |
+
hard_pairs = self.miner(query_embed, labels)
|
866 |
+
return self.loss(query_embed, labels, hard_pairs)
|
867 |
+
else:
|
868 |
+
return self.loss(query_embed, labels)
|
869 |
+
|