Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,20 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
-
from PIL import Image
|
6 |
from model import load_model
|
7 |
from utils import preprocess_image, decode_predictions
|
8 |
import os
|
9 |
|
10 |
# Load the model (ensure the path is correct)
|
11 |
MODEL_PATH = "finetuned_recog_model.pth"
|
12 |
-
FONT_PATH = "NotoSansEthiopic-Regular.ttf" #
|
13 |
|
14 |
# Check if model file exists
|
15 |
if not os.path.exists(MODEL_PATH):
|
16 |
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}. Please provide the correct path.")
|
17 |
|
18 |
-
# Check if font file exists
|
19 |
if not os.path.exists(FONT_PATH):
|
20 |
raise FileNotFoundError(f"Font file not found at {FONT_PATH}. Please provide the correct path.")
|
21 |
|
@@ -23,17 +23,13 @@ if not os.path.exists(FONT_PATH):
|
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model = load_model(MODEL_PATH, device=device)
|
25 |
|
26 |
-
# Load the font for rendering Amharic text
|
27 |
-
from matplotlib import font_manager as fm
|
28 |
-
import matplotlib.pyplot as plt
|
29 |
-
|
30 |
-
ethiopic_font = fm.FontProperties(fname=FONT_PATH, size=15)
|
31 |
-
pil_font = ImageFont.truetype(FONT_PATH, size=20)
|
32 |
-
|
33 |
def recognize_text(image: Image.Image) -> str:
|
34 |
"""
|
35 |
Function to recognize text from an image.
|
36 |
"""
|
|
|
|
|
|
|
37 |
# Preprocess the image
|
38 |
input_tensor = preprocess_image(image).unsqueeze(0).to(device) # [1, 3, 224, 224]
|
39 |
|
@@ -44,29 +40,16 @@ def recognize_text(image: Image.Image) -> str:
|
|
44 |
# Decode predictions
|
45 |
recognized_texts = decode_predictions(log_probs)
|
46 |
|
|
|
47 |
return recognized_texts[0]
|
48 |
|
49 |
-
def recognize_and_overlay(image: Image.Image) -> Image.Image:
|
50 |
-
"""
|
51 |
-
Function to recognize text and overlay it on the image.
|
52 |
-
"""
|
53 |
-
recognized_text = recognize_text(image)
|
54 |
-
|
55 |
-
# Overlay text on the image
|
56 |
-
draw = ImageDraw.Draw(image)
|
57 |
-
text_position = (10, 10) # Top-left corner
|
58 |
-
text_color = (255, 0, 0) # Red color
|
59 |
-
draw.text(text_position, f"Recognized: {recognized_text}", font=pil_font, fill=text_color)
|
60 |
-
|
61 |
-
return image
|
62 |
-
|
63 |
# Define Gradio Interface
|
64 |
iface = gr.Interface(
|
65 |
-
fn=
|
66 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
67 |
-
outputs=gr.
|
68 |
title="Amharic Text Recognition",
|
69 |
-
description="Upload an image containing Amharic text
|
70 |
)
|
71 |
|
72 |
# Launch the Gradio app
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
from model import load_model
|
7 |
from utils import preprocess_image, decode_predictions
|
8 |
import os
|
9 |
|
10 |
# Load the model (ensure the path is correct)
|
11 |
MODEL_PATH = "finetuned_recog_model.pth"
|
12 |
+
FONT_PATH = "NotoSansEthiopic-Regular.ttf" # Path to your font
|
13 |
|
14 |
# Check if model file exists
|
15 |
if not os.path.exists(MODEL_PATH):
|
16 |
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}. Please provide the correct path.")
|
17 |
|
18 |
+
# Check if font file exists (if you plan to use it for any visualization)
|
19 |
if not os.path.exists(FONT_PATH):
|
20 |
raise FileNotFoundError(f"Font file not found at {FONT_PATH}. Please provide the correct path.")
|
21 |
|
|
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
model = load_model(MODEL_PATH, device=device)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def recognize_text(image: Image.Image) -> str:
|
27 |
"""
|
28 |
Function to recognize text from an image.
|
29 |
"""
|
30 |
+
if image is None:
|
31 |
+
return "No image provided."
|
32 |
+
|
33 |
# Preprocess the image
|
34 |
input_tensor = preprocess_image(image).unsqueeze(0).to(device) # [1, 3, 224, 224]
|
35 |
|
|
|
40 |
# Decode predictions
|
41 |
recognized_texts = decode_predictions(log_probs)
|
42 |
|
43 |
+
# Assuming batch size of 1
|
44 |
return recognized_texts[0]
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Define Gradio Interface
|
47 |
iface = gr.Interface(
|
48 |
+
fn=recognize_text,
|
49 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
50 |
+
outputs=gr.Textbox(label="Recognized Amharic Text"),
|
51 |
title="Amharic Text Recognition",
|
52 |
+
description="Upload an image containing Amharic text, and the model will recognize and display the text."
|
53 |
)
|
54 |
|
55 |
# Launch the Gradio app
|