Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
# Load a small, free text generation model
|
| 6 |
+
generator = pipeline("text-generation", model="bigscience/bloomz-560m")
|
| 7 |
+
|
| 8 |
+
# Load a moderation pipeline
|
| 9 |
+
moderator = pipeline("text-classification", model="unitary/toxic-bert")
|
| 10 |
+
|
| 11 |
+
# Simple in-memory rate limiter
|
| 12 |
+
request_log = {}
|
| 13 |
+
MAX_REQUESTS = 10 # max requests
|
| 14 |
+
WINDOW_SECONDS = 60 # per 60 seconds
|
| 15 |
+
|
| 16 |
+
def is_rate_limited(ip):
|
| 17 |
+
now = time.time()
|
| 18 |
+
window_start = now - WINDOW_SECONDS
|
| 19 |
+
history = request_log.get(ip, [])
|
| 20 |
+
# keep only recent requests
|
| 21 |
+
history = [t for t in history if t > window_start]
|
| 22 |
+
if len(history) >= MAX_REQUESTS:
|
| 23 |
+
return True
|
| 24 |
+
history.append(now)
|
| 25 |
+
request_log[ip] = history
|
| 26 |
+
return False
|
| 27 |
+
|
| 28 |
+
def contains_profanity(text, threshold=0.5):
|
| 29 |
+
"""
|
| 30 |
+
Uses a Hugging Face moderation model to detect toxicity.
|
| 31 |
+
Returns True if the text is likely toxic/profane.
|
| 32 |
+
"""
|
| 33 |
+
results = moderator(text)
|
| 34 |
+
|
| 35 |
+
# results looks like: [{'label': 'toxic', 'score': 0.87}]
|
| 36 |
+
label = results[0]['label']
|
| 37 |
+
score = results[0]['score']
|
| 38 |
+
|
| 39 |
+
return label.lower() == "toxic" and score >= threshold
|
| 40 |
+
|
| 41 |
+
# Define your function with some safeguards
|
| 42 |
+
def generate_conclusion(user_input, request: gr.Request):
|
| 43 |
+
ip = request.client.host if request else "unknown"
|
| 44 |
+
if is_rate_limited(ip):
|
| 45 |
+
return "⚠️ Too many requests. Please wait a bit before trying again."
|
| 46 |
+
|
| 47 |
+
if not user_input.strip():
|
| 48 |
+
return "⚠️ Please enter some text."
|
| 49 |
+
|
| 50 |
+
if contains_profanity(user_input):
|
| 51 |
+
return "⚠️ Your input contains inappropriate or toxic language."
|
| 52 |
+
|
| 53 |
+
# Limit input length
|
| 54 |
+
if len(user_input) > 300:
|
| 55 |
+
return "⚠️ Input too long. Please keep it under 300 characters."
|
| 56 |
+
|
| 57 |
+
# Add your instruction prompt
|
| 58 |
+
prompt = (
|
| 59 |
+
"Generate only the final conclusion from the following input. "
|
| 60 |
+
"Do not include elaboration, explanation, or supporting details.\n\n"
|
| 61 |
+
f"{user_input}"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Generate with limits to prevent abuse
|
| 65 |
+
try:
|
| 66 |
+
output = generator(
|
| 67 |
+
prompt,
|
| 68 |
+
max_new_tokens=50, # keep responses short
|
| 69 |
+
do_sample=True,
|
| 70 |
+
temperature=0.7,
|
| 71 |
+
return_full_text=False
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
return output[0]["generated_text"]
|
| 75 |
+
except Exception as e:
|
| 76 |
+
return f"⚠️ An error occurred: {str(e)}"
|
| 77 |
+
|
| 78 |
+
# Gradio interface
|
| 79 |
+
demo = gr.Interface(
|
| 80 |
+
fn=generate_conclusion,
|
| 81 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter your text here..."),
|
| 82 |
+
outputs="text",
|
| 83 |
+
title="Conclusion Generator Demo",
|
| 84 |
+
description="Generates a short conclusion from your input. Limited to 300 characters."
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
demo.queue(concurrency_count=2, max_size=5).launch()
|