yml / app.py
GirishKiran's picture
Upload app.py with huggingface_hub
bf162bb
raw
history blame
10.8 kB
## required lib, required "pip install"
# import transformers
# import accelerate
import openai
import llama_index
import torch
import cryptography
import cryptography.fernet
## interface libs, required "pip install"
import gradio
import huggingface_hub
import huggingface_hub.hf_api
## standard libs, no need to install
import json
import requests
import time
import os
import random
import re
import sys
import psutil
import threading
import socket
# import PIL
# import pandas
import matplotlib
class HFace_Pluto(object):
#
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(HFace_Pluto, self).__init__(*args, **kwargs)
self.author = "Duc Haba"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self._device = 'cuda'
self._steps = [3,8,21,55,89,144]
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
self._xkeyfile = '.xoxo'
self._models = []
self._seed = 667 # sum of walnut in ascii (or Angle 667)
self._width = 512
self._height = 512
self._step = 50
self._guidances = 7.5
self._llama_query_engine = None
self._llama_index_doc = None
#self._generator = torch.Generator(device='cuda')
self.pipes = []
self.prompts = []
self.images = []
self.seeds = []
self.fname_id = 0
self.dname_img = "img_colab/"
self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8"
self._gpt_key="'gAAAAABkgtoTOLPegnxNIAfBfAda17h5HIHTS_65bobO3SdDlJam07AHGrcolvk9c6IWNJtTTxaCb8_JtWnLz0Y5h9doyfL-nJZggeQ6kLtaD4XwZYcG-AtYNNGCnJzVt9AaysPDnu-KWVhnJSe-DyH0oOO33doE0g=='"
self._fkey="=cvsOPRcWD6JONmdr4Sh6-PqF6nT1InYh965mI8f_sef"
self._color_primary = '#2780e3' #blue
self._color_secondary = '#373a3c' #dark gray
self._color_success = '#3fb618' #green
self._color_info = '#9954bb' #purple
self._color_warning = '#ff7518' #orange
self._color_danger = '#ff0039' #red
self._color_mid_gray = '#495057'
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# fetch huggingface file
def fetch_hface_files(self,
hf_names,
hf_space="duchaba/monty",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
force_filename=lo)
except:
self._pp("*Error", f)
return
#
#
def push_hface_files(self,
hf_names,
hf_space="duchaba/skin_cancer_diagnose",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
#
def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None):
api = huggingface_hub.HfApi()
api.upload_folder(folder_path=hf_folder,
repo_id=hf_space_id,
path_in_repo=hf_dest_folder,
repo_type="space")
return
#
# Define a function to display available CPU and RAM
def fetch_system_info(self):
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
# Print the results
s += f"CPU usage: {cpu_usage}%\n"
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
return s
#
def restart_script_periodically(self):
while True:
#random_time = random.randint(540, 600)
random_time = random.randint(15800, 21600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
return
#
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
#
def fetch_gpu_info(self):
s=''
try:
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus {torch.cuda.is_available()}\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
except Exception as e:
s += f'**Warning, No GPU: {e}'
return s
#
def _fetch_crypt(self,is_generate=False):
s=self._fkey[::-1]
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
#
def _gen_key(self):
key = cryptography.fernet.Fernet.generate_key()
with open(self._xkeyfile, "wb") as key_file:
key_file.write(key)
return
#
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
#
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
#
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
#
def _fetch_version(self):
s = ''
# print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
# print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
s += f"{'cryptography: 3.34.0,':<28} Actual: {cryptography.__version__}\n"
s += f"{'llama_index: 0.6.21.post1,':<28} Actual: {llama_index.__version__}\n"
return s
#
def _fetch_host_ip(self):
s=''
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
return s
#
def _setup_openai(self,key=None):
if (key is None):
key = self._decrypt_it(self._gpt_key)
#
openai.api_key = key
os.environ["OPENAI_API_KEY"] = key
return
#
def _fetch_index_files(self,llama_ix):
res = []
x = llama_ix.ref_doc_info
for val in x.values():
jdata = json.loads(val.to_json())
fname = jdata['extra_info']['file_name']
res.append(fname)
# remove dublication name
res = list(set(res))
return res
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
monty = HFace_Pluto("Monty")
monty._login_hface()
print(monty._fetch_version())
monty._ph()
print(monty.fetch_system_info())
monty._ph()
print(monty.fetch_gpu_info())
monty._ph()
print(monty._fetch_host_ip())
monty._ph()
monty._setup_openai()
@add_method(HFace_Pluto)
def load_llama_index(self,vindex='vector_index',vpath='./index_storage'):
try:
storage_context = llama_index.StorageContext.from_defaults(persist_dir=vpath)
# load index
self._llama_index_doc = llama_index.load_index_from_storage(storage_context, index_id=vindex)
print(f'Index doc are: {self._fetch_index_files(self._llama_index_doc)}')
except Exception as e:
print('**Error: can not load index, check the index_storage directory or the GPT auth token')
print('If do not have index tokens then run the .gen_llama_index() function')
print(f'Exception: {e}')
return
monty.load_llama_index()
@add_method(HFace_Pluto)
def ask_me(self, p):
if (self._llama_query_engine is None):
self._llama_query_engine = self._llama_index_doc.as_query_engine()
resp = self._llama_query_engine.query(p)
return resp
in_box = [gradio.Textbox(lines=1, label="Your Humana request", placeholder="Your Humana request...see example if you need help.")
# ,gradio.Slider(0.0001, .05, value=0.001, step=.0001,label="Your Personalize Safer Value:")
]
out_box = [gradio.Textbox(label="Humana response:")
# ,gradio.Textbox(lines=4, label="Response Raw JSON Data:")
]
#
title = "Humana and YML Fine-tune LLM model"
desc = '*Note: This model is fine-tuned by YML using GPT3.5 as the base LLM.'
arti = '''
<ul><li>The documents for fine-tuning are:</li>
<li>Humana_ANOC_gold_plus_2023.pdf</li>
<li>Humana_profile_2023.pdf</li>
<li><i>**Note: You can add more documentation. The more documentation the model has the smarter it will be.</i></li>
</ul>
'''
exp = [
['Tell me the Humana Gold Plus plan.'],
['Please write a summary in bullet point of the Humana Gold Plus SNP-DE H0028-015 (HMO-POS D-SNP) Annual Notice of Changes for 2023.'],
['Compare the Humana monthly premium and maximum out-of-pocket for in-network and out-network.'],
['What is the maximum dollar value allowance for in-network over the counter drug?'],
['Write a newsletter introducing Humana Gold Plus plan, and target it to senior citizen demographic.'],
['Please write a summary about the Humana and Longevity Health Partner so that a teenage can understand.'],
['Tell me about the state agency contact information in bullet point.'],
['Please tell me more about the Humana Offer Free Counseling about Medicare and Medicaid'],
['Write four engaging tweets about the Humana Gold Plus plan.'],
['Tell me something funny about Humana.'],
['Is Humana is same as human?']
]
flag_options = ['Good :-)', 'Need Improvement', 'Wrong Answer']
gradio.Interface(fn=monty.ask_me,
inputs=in_box,
outputs=out_box,
examples=exp,
title=title,
description=desc,
article=arti,
flagging_options=flag_options).launch()