Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import cv2 | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import img_to_array | |
# Load the model | |
model = load_model("face_emotion_detection.h5") | |
class_names = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"] | |
# Load face detector | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
def detect_emotion(image): | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
faces = face_cascade.detectMultiScale(gray, 1.3, 5) | |
if len(faces) == 0: | |
return "No face detected", image | |
for (x, y, w, h) in faces: | |
roi_gray = gray[y:y+h, x:x+w] | |
roi_gray = cv2.resize(roi_gray, (48, 48)) | |
roi = img_to_array(roi_gray) / 255.0 | |
roi = np.expand_dims(roi, axis=0) | |
roi = np.expand_dims(roi, axis=-1) | |
preds = model.predict(roi, verbose=0)[0] | |
label = class_names[np.argmax(preds)] | |
confidence = round(np.max(preds) * 100, 2) | |
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) | |
cv2.putText(image, f"{label}: {confidence}%", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) | |
return f"{label} ({confidence}%)", image | |
iface = gr.Interface(fn=detect_emotion, | |
inputs=gr.Image(type="numpy", label="Upload a Face Image"), | |
outputs=[gr.Label(), gr.Image(type="numpy")], | |
title="Face Emotion Detector") | |
iface.launch() | |