PyFinalHW / app.py
GiladtheFixer's picture
Upload 3 files
9130e0d
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import numpy as np
# ----------------------------------------------------------------------------------------------------------------------------
# Helpful function
# ----------------------------------------------------------------------------------------------------------------------------
# Set up the Files
def SetUpFile(flag):
# print(flag)
file =0
if flag:
file= pd.read_csv('data.csv',index_col=0)
else:
file=pd.read_csv('data-3 (2).csv',index_col=0)
return file
# Convert from week Type to date type and return string
def ConvertWeektoDate(Year_week):
import datetime
d = Year_week
r = datetime.datetime.strptime(d + '-1', "%Y-W%W-%w").date()
return r.strftime('%Y/%m/%d')
# This function get flag (true for file 1) and country name and colum
# and return kind of list
def GetCleanData(flag,country,colum):
if flag:
file1=SetUpFile(flag)
# print(file1.head())
return file1.loc[[country],colum]
else:
file2=SetUpFile(flag)
return file2.loc[[country],colum]
def GetDatesFromFile1(country):
file1=SetUpFile(True)
date_list = file1.loc[[country],'year_week'].values
Array_toreturn=[]
for x in date_list:
# print(x)
real_date=ConvertWeektoDate(x)
# print(real_date)
Array_toreturn.append(real_date)
# print(Array_toreturn)
return Array_toreturn
def TopN(list1, N):
final_list = []
for i in range(0, N):
max1 = 0
for j in range(len(list1)):
if list1[j] > max1:
max1 = list1[j]
list1.remove(max1)
final_list.append(max1)
return(final_list)
def Sum_Of_Var_In_Country(country):
date_list = GetCleanData(True, country, 'year_week')
the_lastOne = '2020'
filtersDate = []
for x in date_list:
filtersDate.append(x[0:4])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
data = GetCleanData(True, country, 'tests_done')
# print(len(data))
filedate = sorted(date_list)
array_ofSum = []
sum = 0
for x in range(len(data)):
# print(x, data.values[x], sum, filedate[x][0:4])
if x != 0:
the_lastOne = filedate[x - 1][0:4]
if the_lastOne == filedate[x][0:4]:
sum += data.values[x]
if the_lastOne != filedate[x][0:4] or x == len(data) - 1:
array_ofSum.append(sum)
sum = 0
# print((array_ofSum), (UniqList))
return ((array_ofSum), (UniqList))
# ----------------------------------------------------------------------------------------------------------------------------
# The Hw
# ----------------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------------
# Part 1
# ----------------------------------------------------------------------------------------------------------------------------
#Q1
def Display_Test_Rate(country):
data=GetCleanData(True,country,'testing_rate')
Cyprus_Test_rate_list=data.values.tolist()
xpoints = list(range(len(Cyprus_Test_rate_list)))
XDate=GetDatesFromFile1(country)
plt.plot(xpoints,Cyprus_Test_rate_list)
plt.title('Testing Rate in '+country)
plt.ylabel('testing rate')
plt.xlabel('week number')
# plt.xticks(rotation=-45)
plt.show()
#Q2
def Display_postive_rate(country):
Sweeden=GetCleanData(True,country,'positivity_rate')
# print(Sweeden.values)
xpoints = list(range(len(Sweeden.values)))
plt.plot(xpoints,Sweeden.values)
plt.title('positivity_rate in '+country)
plt.ylabel('R ratio')
plt.xlabel('week number')
# plt.xticks(rotation=-45)
plt.axhline(y=2, color='green', linestyle='-')
plt.text(0,4,'GOOD ratio')
plt.axhline(y=15, color='orange', linestyle='-')
plt.text(0, 17, 'satisfy ratio')
plt.axhline(y=30, color='red', linestyle='-')
plt.text(0, 32, 'Very BAD ratio')
plt.show()
#Q3
def Display_SumOfTest(country):
date_list=GetDatesFromFile1(country)
the_lastOne=''
filtersDate=[]
for x in date_list:
filtersDate.append(x[0:7])
UniqList=set(filtersDate)
UniqList=list(UniqList)
UniqList.sort()
# print(UniqList)
data=GetCleanData(True,country,'tests_done')
filedate = GetDatesFromFile1(country)
array_ofSum=[]
# print(data.values)
# print(filedate)
sum=0
for x in range(len(data)):
# print(x,data.values[x],filedate[x][0:7],UniqList[x])
print(x, data.values[x], filedate[x][0:7])
if x!=0:
the_lastOne = filedate[x - 1][0:7]
print(the_lastOne)
if the_lastOne==filedate[x][0:7]:
sum+=data.values[x]
print(sum)
else:
array_ofSum.append(sum)
sum=0
print('skip')
# xpoints = list(range(len(Sweeden.values)))
colors = ['red', 'green']
plt.bar(UniqList,array_ofSum,color=colors)
plt.xticks(rotation=-90)
plt.ylabel('Sum of Test done')
plt.xlabel('Year/month')
plt.title('Sum of test done by month in '+country)
plt.show()
#Q4
def Display_SumOfPostive(country):
date_list = GetDatesFromFile1(country)
the_lastOne = ''
filtersDate = []
for x in date_list:
filtersDate.append(x[0:7])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
data = GetCleanData(True, country, 'new_cases')
filedate = GetDatesFromFile1(country)
array_ofSum = []
# print(data.values)
# print(filedate)
sum = 0
for x in range(len(data)):
# print(x,data.values[x],filedate[x][0:7],UniqList[x])
print(x, data.values[x], filedate[x][0:7])
if x != 0:
the_lastOne = filedate[x - 1][0:7]
print(the_lastOne)
if the_lastOne == filedate[x][0:7]:
sum += data.values[x]
print(sum)
else:
array_ofSum.append(sum)
sum = 0
print('skip')
# xpoints = list(range(len(Sweeden.values)))
colors = ['red', 'green']
plt.bar(UniqList, array_ofSum, color=colors)
plt.xticks(rotation=-90)
plt.ylabel('Sum of new cases')
plt.xlabel('Year/month')
plt.title('Sum of new cases by month in '+country)
plt.show()
#Q5
def Display_Death(country):
dataY=GetCleanData(False,country,'value')
dataX=GetCleanData(False,country,'date')
xpoints = list(range(len(dataX.values)))
plt.plot(xpoints,dataY.values)
plt.ylabel('Amount of Death')
plt.xlabel('Index')
plt.title('Amount of Death in '+country)
plt.show()
#Q6
def Display_DeathPie(country):
date_list=GetCleanData(False,country,'date')
the_lastOne='2020'
filtersDate=[]
for x in date_list:
filtersDate.append(x[0:4])
UniqList=set(filtersDate)
UniqList=list(UniqList)
UniqList.sort()
# print(UniqList)
data=GetCleanData(False,country,'value')
print(len(data))
filedate = sorted(date_list)
array_ofSum=[]
# print(data.values)
print('sort Date',filedate)
sum=0
for x in range(len(data)):
print(x,data.values[x],sum,filedate[x][0:4])
# print(x, data.values[x], filedate[x][0:4])
if x!=0:
the_lastOne = filedate[x - 1][0:4]
# print(the_lastOne)
if the_lastOne==filedate[x][0:4]:
sum+=data.values[x]
# print(sum)
if the_lastOne!=filedate[x][0:4] or x==len(data)-1:
array_ofSum.append(sum)
sum=0
print('skip')
print((array_ofSum),(UniqList))
colors=['r','g','b','y']
plt.pie(array_ofSum, labels=UniqList, colors=colors,
startangle=90, shadow=True,
radius=1.2, autopct='%1.1f%%')
plt.text(-0.5,1.5,'The death in '+country)
plt.legend()
plt.show()
#Q7
def Display_TestRatio(country):
tests_done = GetCleanData(True,country,'tests_done').values
new_cases = GetCleanData(True,country,'new_cases').values
Ratio =[]
# print(len(tests_done),len(new_cases))
for i in range(len(tests_done)):
if tests_done[i]!=0:
Ratio.append(new_cases[i]/tests_done[i])
xpoints = list(range(len(Ratio)))
print(xpoints,Ratio)
plt.plot(xpoints,Ratio,marker='o')
plt.title('The Ratio new_cases/test_done in '+country)
plt.ylabel('ratio')
plt.xlabel('weeks')
plt.show()
#Q8
def Display_DeathAvrage(country):
deathList=GetCleanData(False,country,'value')
date_list=GetCleanData(False,country,'date')
the_lastOne=''
filtersDate=[]
for x in date_list:
filtersDate.append(x[0:7])
UniqList=set(filtersDate)
UniqList=list(UniqList)
UniqList.sort()
# print(UniqList)
# print(len(deathList))
filedate = sorted(date_list)
array_ofSum=[]
# print(data.values)
# print('sort Date',filedate)
count=0
sum=0
for x in range(len(deathList)):
print(x,deathList.values[x],sum,filedate[x][0:7])
# print(x, data.values[x], filedate[x][0:4])
if x!=0:
the_lastOne = filedate[x - 1][0:7]
# print(the_lastOne)
if the_lastOne==filedate[x][0:7]:
count=count+1
sum+=deathList.values[x]
# print(sum)
if the_lastOne!=filedate[x][0:7] or x==len(deathList)-1:
if count==0:
continue
array_ofSum.append(sum/count)
sum=0
count=0
print('skip')
print(len(array_ofSum),len(UniqList))
print((array_ofSum),(UniqList))
colors=['r','g','b']
plt.bar(UniqList,array_ofSum,color=colors)
plt.xticks(rotation=-90)
plt.title('The avarge of death in '+country)
plt.ylabel('avg of death')
plt.show()
#Q9
def Display_freqSource(country):
all=SetUpFile(False)
print(len(all['source'].values))
colors=['r','g','b']
plt.hist(all['source'].values,color='pink',alpha=1,width=0.8)
plt.xticks(rotation=-45)
plt.title('The frequency of source data')
plt.ylabel('frequency')
plt.show()
#Q10
def Display_NegtiveTest(country):
tests_done = GetCleanData(True, country, 'tests_done').values
new_cases = GetCleanData(True, country, 'new_cases').values
date_list = GetDatesFromFile1(country)
the_lastOne = '2020'
filtersDate = []
for x in date_list:
filtersDate.append(x[0:4])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
print(len(tests_done),len(new_cases))
filedate = sorted(date_list)
array_ofSum = []
# print(data.values)
# print('sort Date', filedate)
sum = 0
sumOfTest=0
for x in range(len(new_cases)):
print(x, new_cases[x],tests_done[x], sum, filedate[x][0:4])
# print(x, data.values[x], filedate[x][0:4])
if x != 0:
the_lastOne = filedate[x - 1][0:4]
# print(the_lastOne)
if the_lastOne == filedate[x][0:4]:
sum += tests_done[x]-new_cases[x]
sumOfTest+=tests_done[x]
# print(sum)
if the_lastOne != filedate[x][0:4] or x == len(new_cases) - 1:
array_ofSum.append(sum/sumOfTest)
sum = 0
sumOfTest=0
print('skip')
print((array_ofSum), (UniqList))
colors = ['r', 'g', 'b', 'y']
plt.barh(UniqList,array_ofSum,color='Yellowgreen',height=0.6)
plt.title('The negtive precentage of tests in '+country)
plt.show()
# ----------------------------------------------------------------------------------------------------------------------------
# Part2
# ----------------------------------------------------------------------------------------------------------------------------
#guy
def Compare_avg_pr_by_two_countries(year, country1, country2):
data = pd.read_csv('data.csv', index_col=0)
file1 = data.loc[country1, ['positivity_rate', 'year_week']]
file2 = data.loc[country2, ['positivity_rate', 'year_week']]
sum1 = 0
sum2 = 0
filteredData1 = file1[file1['year_week'].str.startswith(str(year))]['positivity_rate'].values
filteredData2 = file2[file2['year_week'].str.startswith(str(year))]['positivity_rate'].values
for i in filteredData1:
sum1+=i
for i in filteredData2:
sum2+=i
colors = ['r', 'g']
array_ofSum = [sum1, sum2]
UniqList = [country1, country2]
plt.pie(array_ofSum, labels=UniqList, colors=colors,
startangle=90, shadow=True, autopct='%1.1f%%')
plt.title('Compare positive rate average between ' + country1 + ' and ' + country2 + ' in ' + str(year))
plt.legend()
plt.show()
#guy
def Compare_positive_rate(year, country1, country2):
data = pd.read_csv('data.csv', index_col=0)
file1 = data.loc[country1, ['positivity_rate', 'year_week']]
file2 = data.loc[country2, ['positivity_rate', 'year_week']]
filteredData1 = file1[file1['year_week'].str.startswith(str(year))]['positivity_rate'].values
filteredData2 = file2[file2['year_week'].str.startswith(str(year))]['positivity_rate'].values
xpoints = list(range(len(filteredData1)))
ypoints = list(range(len(filteredData2)))
plt.bar(ypoints, filteredData2, label=country1,color='g')
plt.bar(xpoints, filteredData1, label=country1, color='r')
plt.title('Comparing positivity rate between {} and {} for {}'.format(country1, country2, year))
plt.xlabel('Week number')
plt.ylabel('Positivity Rate')
plt.legend()
plt.show()
#guy
def Compare_deaths_based_indicator_in_a_given_year(year):
data = SetUpFile(False)
data['year'] = data['year_week'].str[:4]
data_year = data[data['year'] == year]
deaths_by_indicator = data_year.groupby('indicator')['value'].sum()
print(deaths_by_indicator.keys())
colors = ['r', 'g','y','b']
plt.bar(deaths_by_indicator.keys(), deaths_by_indicator.values, label=deaths_by_indicator.keys(),color=colors)
plt.title('Compare deaths based on info from each indicator_in '+year)
plt.legend()
plt.show()
#dor
def compare_new_cases(country1, country2, year):
date_list1=GetCleanData(True,country1,'year_week')
data1=GetCleanData(True,country1,'new_cases')
print(data1)
filedate1 = sorted(date_list1)
sum1=0
count=0
for x in range(len(data1)):
if filedate1[x - 1][0:4]==year:
# print(the_lastOne,' ', data1.values[x])
sum1+=data1.values[x-1]
count+=1
print(sum1)
date_list2=GetCleanData(True,country2,'year_week')
data2=GetCleanData(True,country2,'new_cases')
filedate2 = sorted(date_list2)
sum2=0
for x in range(len(data1)):
if filedate2[x - 1][0:4]==year:
the_lastOne = filedate2[x - 1][0:4]
sum2+=data2.values[x-1]
print(sum2)
colors=['r','g']
array_ofSum=[sum1,sum2]
UniqList=[country1,country2]
plt.pie(array_ofSum, labels=UniqList, colors=colors,
startangle=90, shadow=True,
radius=1.2, autopct='%1.1f%%')
plt.text(-1,1.5,'Comparation of new cases between '+country1+ ' and '+ country2+' in '+year)
plt.legend()
plt.show()
#Dor
def Display_Tests_Done_Comparation(country1, country2):
sumCounty1=Sum_Of_Var_In_Country(country1)[0]
sumCounty2=Sum_Of_Var_In_Country(country2)[0]
years=Sum_Of_Var_In_Country(country1)[1]
print(sumCounty1,sumCounty2)
arrOfSums=(sumCounty1,sumCounty2)
print(years)
plt.bar(years,sumCounty2,color='b')
plt.bar(years,sumCounty1,color='r')
plt.ylabel('amount of tests')
plt.xlabel('years')
plt.title('Comparation of test done between '+country1+' and '+country2)
plt.show()
#dor
def plot_top_months_with_deaths(year,NumOfMonth):
data = SetUpFile(False)
#return the relevent data by wanted year
data_year = data[data['date'].str[:4] == year]
#return sum of death for all month
deaths_by_month = data_year.groupby(data_year['date'].str[5:7])['value'].sum().reset_index()
#sort month and take 3 largest
sorted_months = deaths_by_month.sort_values('value', ascending=False).head(NumOfMonth)
months = sorted_months['date']
deaths = sorted_months['value']
plt.bar(months, deaths)
plt.xlabel('Month')
plt.ylabel('Number of Deaths')
plt.title(f'Top Three Months with Highest Deaths in {year}')
plt.show()
#Q12
def Display_TheMostTestAmount(year,N):
countries=GetUniqCountry()
SumOfTestbyYear=[]
SumOfTestbyYear2=[]
for country in countries:
test_Done_per_country=GetCleanData(True,country,'tests_done').values
Years_per_country = GetCleanData(True, country, 'year_week').values
# print(len(test_Done_per_country),len(Years_per_country))
sum=0
for i in range(len(test_Done_per_country)):
if Years_per_country[i][:4]==year:
sum+=test_Done_per_country[i]
SumOfTestbyYear.append(sum)
SumOfTestbyYear2.append(sum)
print(len(SumOfTestbyYear),SumOfTestbyYear)
temp=SumOfTestbyYear
topn=TopN(temp,N)
print(topn)
print(len(SumOfTestbyYear), SumOfTestbyYear)
listLabels=[]
for i in range(len(SumOfTestbyYear2)):
for j in range(len(topn)):
if topn[j]==SumOfTestbyYear2[i]:
listLabels.append(countries[i])
print(listLabels)
plt.bar(listLabels,topn,width=0.8,color=['r','g','b'])
plt.title('Top '+str(N)+' countries with the most test amount')
plt.ylabel('Test amount (in 10 millions)')
plt.legend()
plt.show()
#Q15
def Display_popdeath_ratio(year,N):
file=SetUpFile(False)
countries=list(set(file['value'].keys()))
dates=file['date'].values
Death = file['value'].values
print(len(countries),countries)
ValuesSumsPerCountry=[]
ValuesSumsPerCountry2=[]
popList=[]
popTopList=[]
for i in range(len(countries)):
popList.append(GetCleanData(True,countries[i],'population')[0])
date_country=GetCleanData(False,countries[i],'date').values
death_country=GetCleanData(False,countries[i],'value').values
# print(len(date_country), date_country)
# print(len(death_country), death_country)
sumDeathPer = 0
for a in range(len(death_country)):
if date_country[a][:4]==str(year):
sumDeathPer+=death_country[a]
ValuesSumsPerCountry.append(sumDeathPer)
ValuesSumsPerCountry2.append(sumDeathPer)
labelList=[]
newRatioList=[]
newRatioList2 = []
andDeathValueTop=[]
for i in range(len(ValuesSumsPerCountry)):
newRatioList.append(ValuesSumsPerCountry[i]/popList[i])
newRatioList2.append(ValuesSumsPerCountry[i] / popList[i])
topn=TopN(newRatioList,N)
for i in range(len(ValuesSumsPerCountry2)):
if topn.__contains__(newRatioList2[i]):
labelList.append(countries[i])
popTopList.append(popList[i])
andDeathValueTop.append(ValuesSumsPerCountry2[i])
print(len(ValuesSumsPerCountry2),ValuesSumsPerCountry2)
print(len(popTopList), popTopList)
print(len(topn), topn)
print(len(labelList), labelList)
plt.bar(labelList,popTopList,label='Population amount')
plt.bar(labelList,andDeathValueTop,label='Death amount')
plt.title('Top '+str(N)+' countries with the most Death amount vs population amount')
plt.ylabel('in 10 millions')
plt.legend()
plt.show()
#Q18
def DisplayTestRatio(country1,country2,year):
datesList=GetDatesFromFile1(country1)
tests_done1=GetCleanData(True,country1,'tests_done').values
new_cases1=GetCleanData(True,country1,'new_cases').values
tests_done2=GetCleanData(True,country2,'tests_done').values
new_cases2=GetCleanData(True,country2,'new_cases').values
tests_done1F=[]
new_cases1F=[]
tests_done2F=[]
new_cases2F=[]
for i in range(len(datesList)):
if datesList[i][:4]==str(year):
tests_done1F.append(tests_done1[i])
new_cases1F.append(new_cases1[i])
tests_done2F.append(tests_done2[i])
new_cases2F.append(new_cases2[i])
print(len(tests_done1F),sum(tests_done1F))
print(len(new_cases1F), sum(new_cases1F))
print(len(tests_done2F),sum(tests_done2F) )
print(len(new_cases2F),sum(new_cases2F) )
plt.pie([sum(tests_done1F),sum(tests_done2F)],labels=['tests done in '+country1,'tests done in '+country2],radius=0.75, center=(1.7,0),colors=['r','b'], shadow = True ,autopct='%1.1f%%')
plt.pie([sum(new_cases1F),sum(new_cases2F)],labels=['new cases in '+country1,'new cases in '+country2],radius=0.75, center=(-1.7, 0), colors=['y','g'], shadow = True,autopct='%1.1f%%')
plt.pie([1],radius=0.001,center=(0,0))
plt.title('compare test done vs new cases in '+country1+' vs '+ country2+' ('+year+')')
plt.show()
#Dor
def compar_Death_between_three_countries(country1,country2,country3):
countries = [country1, country2, country3]
data = pd.read_csv('data-3 (2).csv')
# Convert 'date' column to datetime type
data['date'] = pd.to_datetime(data['date'], format='%Y-%m-%d') # Specify the date format if needed
# Filter the data for the selected countries
filtered_data = data[data['country'].isin(countries)]
# Extract year and month from the 'date' column
filtered_data['year'] = filtered_data['date'].dt.year
# Group the data by country, year, and month, and calculate the sum of values
grouped_data = filtered_data.groupby(['country', 'year'])['value'].sum().reset_index()
# Set up the figure and axis
fig, ax = plt.subplots(figsize=(10, 6))
# Get unique years from the data
years = grouped_data['year'].unique()
# Plot data for each country
for country in countries:
country_data = grouped_data[grouped_data['country'] == country]
ax.plot(country_data['year'], country_data['value'], label=f"{country} ")
# Customize the plot
ax.set_xlabel('Year')
ax.set_ylabel('Death')
ax.set_title('Comparison of Death between '+country1+' '+country2+' '+country3+' '+ 'by Year ')
ax.legend()
# Show the plot
plt.show()
# ----------------------------------------------------------------------------------------------------------------------------
# Dashboard
# ----------------------------------------------------------------------------------------------------------------------------
def DeathPieYears(country):
date_list = GetCleanData(False, country, 'date')
the_lastOne = '2020'
filtersDate = []
for x in date_list:
filtersDate.append(x[0:4])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
data = GetCleanData(False, country, 'value')
print(len(data))
filedate = sorted(date_list)
array_ofSum = []
# print(data.values)
print('sort Date', filedate)
sum = 0
for x in range(len(data)):
print(x, data.values[x], sum, filedate[x][0:4])
# print(x, data.values[x], filedate[x][0:4])
if x != 0:
the_lastOne = filedate[x - 1][0:4]
# print(the_lastOne)
if the_lastOne == filedate[x][0:4]:
sum += data.values[x]
# print(sum)
if the_lastOne != filedate[x][0:4] or x == len(data) - 1:
array_ofSum.append(sum)
sum = 0
print('skip')
print((array_ofSum), (UniqList))
return [array_ofSum,UniqList]
def PostiveSumbyMonth(country):
date_list = GetDatesFromFile1(country)
the_lastOne = ''
filtersDate = []
for x in date_list:
filtersDate.append(x[0:7])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
data = GetCleanData(True, country, 'new_cases')
filedate = GetDatesFromFile1(country)
array_ofSum = []
# print(data.values)
# print(filedate)
sum = 0
for x in range(len(data)):
# print(x,data.values[x],filedate[x][0:7],UniqList[x])
print(x, data.values[x], filedate[x][0:7])
if x != 0:
the_lastOne = filedate[x - 1][0:7]
print(the_lastOne)
if the_lastOne == filedate[x][0:7]:
sum += data.values[x]
print(sum)
else:
array_ofSum.append(sum)
sum = 0
print('skip')
return [array_ofSum,UniqList]
def TestRatioWeekly(country):
tests_done = GetCleanData(True,country,'tests_done').values
new_cases = GetCleanData(True,country,'new_cases').values
Ratio =[]
# print(len(tests_done),len(new_cases))
for i in range(len(tests_done)):
if tests_done[i]!=0:
Ratio.append(new_cases[i]/tests_done[i])
xpoints = list(range(len(Ratio)))
print(xpoints,Ratio)
return[Ratio,xpoints]
def SumofTestMonthly(country):
date_list = GetDatesFromFile1(country)
the_lastOne = ''
filtersDate = []
for x in date_list:
filtersDate.append(x[0:7])
UniqList = set(filtersDate)
UniqList = list(UniqList)
UniqList.sort()
# print(UniqList)
data = GetCleanData(True, country, 'tests_done')
filedate = GetDatesFromFile1(country)
array_ofSum = []
# print(data.values)
# print(filedate)
sum = 0
for x in range(len(data)):
# print(x,data.values[x],filedate[x][0:7],UniqList[x])
print(x, data.values[x], filedate[x][0:7])
if x != 0:
the_lastOne = filedate[x - 1][0:7]
print(the_lastOne)
if the_lastOne == filedate[x][0:7]:
sum += data.values[x]
print(sum)
else:
array_ofSum.append(sum)
sum = 0
print('skip')
# xpoints = list(range(len(Sweeden.values)))
# colors = ['red', 'green']
# plt.bar(UniqList, array_ofSum, color=colors)
return[array_ofSum,UniqList]
def SumOfDeathRatioEurop(country):
# Death=GetCleanData(False,country,'value')
AllDeath=SetUpFile(False)
AllDeath=AllDeath['value']
print(AllDeath)
print(len(AllDeath.keys().values))
print(len(AllDeath.values))
OurSum=0
AllEurop=0;
for i in range(len(AllDeath.values)):
if AllDeath.keys().values[i]==country:
OurSum+=AllDeath.values[i]
AllEurop+=AllDeath.values[i]
# print(OurSum,AllEurop,round(OurSum/AllEurop,3))
return[OurSum,AllEurop,round(OurSum/AllEurop,3)*100]
def calculate_country_population_ratio(country):
data = SetUpFile(True)
country_population = data.loc[data.index == country, 'population'].sum()
total_population = data['population'].sum()
ratio = country_population / total_population
print(ratio)
return ratio
def getPopulationBycountry(country):
population=GetCleanData(True,country,'population')
return population[0]
def display_Dashborad(country):
resPie=DeathPieYears(country)
resPlotMonth=PostiveSumbyMonth(country)
resplotTestRatio=TestRatioWeekly(country)
barData=SumofTestMonthly(country)
resForTextDeath=SumOfDeathRatioEurop(country)
resPop=getPopulationBycountry(country)
resPopR=calculate_country_population_ratio(country)
# Initialise the subplot function using number of rows and columns
figure, axis = plt.subplots(2, 2)
# For Sine Function
axis[0, 0].plot(resPlotMonth[1], resPlotMonth[0],color='r')
axis[0, 0].tick_params(axis='x', rotation=-90)
# plt.xticks(rotation=-90)
axis[0, 0].set_title("Sum of postive cases in "+country+" by month and year")
# For Cosine Function
axis[1, 1].plot(resplotTestRatio[1], resplotTestRatio[0],color='y')
# axis[1, 1].set_title("Ratio test done / new cases in "+country+" weekly")
# For Tangent Function
axis[1, 0].pie(resPie[0],labels=resPie[1],autopct='%1.1f%%')
# axis[0, 0].set_title("Death in "+country+" by years")
# For Tanh Function
axis[0, 1].bar(barData[1], barData[0])
axis[0, 1].set_title("Sum of Test in "+country+" by month")
axis[0, 1].tick_params(axis='x', rotation=-90)
# axis[2,2].text(0,0,"This is the Avarge",fontsize=300)
axis[-1,0].text(-3.95,0.2,"Sum of death in Europ: "+str(round(resForTextDeath[1]))+"\nThe sum of death in "+country+": "+str(round(resForTextDeath[0]))+"\nThe ratio is: "+str(round(resForTextDeath[2],3))+"%",fontsize=14, color='r')
axis[-1,0].text(-3.95,-0.4,"The population in "+country+": "+str(round(resPop))+"\n The Ratio vs All Europ: "+str(round(resPopR*100,4))+" %",fontsize=14, color='g')
axis[-1,0].text(4.4,-1.7,"Test Ratio (test done / new cases) in "+country,fontsize=18, color='black')
axis[-1, 0].text(-1.2, -1.7, "Sum Of Death in "+ country+" By Years", fontsize=18, color='black')
# Combine all the operations and display
plt.show()
# ----------------------------------------------------------------------------------------------------------------------------
# Main interFace
# ----------------------------------------------------------------------------------------------------------------------------
def GetUniqCountry():
keys=SetUpFile(True)
setkeys=set(keys.index)
listkeys = list(setkeys)
return listkeys
def App(fn,country1,country2,country3,year,N):
if fn == 1:
Display_Test_Rate(country1)
elif fn == 2:
Display_postive_rate(country1)
elif fn == 3:
Display_SumOfTest(country1)
elif fn == 4:
Display_SumOfPostive(country1)
elif fn == 5:
Display_Death(country1)
elif fn == 6:
Display_DeathPie(country1)
elif fn == 7:
Display_TestRatio(country1)
elif fn == 8:
Display_DeathAvrage(country1)
elif fn == 9:
Display_freqSource(country1)
elif fn == 10:
Display_NegtiveTest(country1)
elif fn == 11:
Compare_avg_pr_by_two_countries(year,country1,country2)
elif fn == 12:
Compare_positive_rate(year,country1,country2)
elif fn == 13:
Compare_deaths_based_indicator_in_a_given_year(year)
elif fn == 14:
compare_new_cases(country1,country2,year)
elif fn == 15:
Display_Tests_Done_Comparation(country1,country2)
elif fn == 16:
plot_top_months_with_deaths(year,N)
elif fn == 17:
Display_TheMostTestAmount(year,N)
elif fn == 18:
Display_popdeath_ratio(year,N)
elif fn == 19:
DisplayTestRatio(country1,country2,year)
elif fn == 20:
compar_Death_between_three_countries(country1,country2,country3)
else:
display_Dashborad(country1)
def interFaceLaunch():
demo = gr.Interface(fn=App, inputs=[gr.Dropdown([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,'Dashboard'],label='function number'),gr.Dropdown(GetUniqCountry(),label='Countries1'),gr.Dropdown(GetUniqCountry(),label='Countries2'),gr.Dropdown(GetUniqCountry(),label='Countries3'),gr.Dropdown(['2020','2021','2022','2023'],label='Year'),gr.Dropdown(list(range(len(GetUniqCountry()))),label='N')], outputs="plot")
demo.launch()
interFaceLaunch()