GiladtheFixer commited on
Commit
ce0ccc1
·
verified ·
1 Parent(s): 6c63eee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -35
app.py CHANGED
@@ -1,38 +1,8 @@
1
- import numpy as np
2
- import tensorflow as tf
3
- import gradio as gr
4
- from tensorflow.keras.optimizers import Adam
5
  from huggingface_hub import from_pretrained_keras
6
 
7
- reloaded_model = from_pretrained_keras('ShaharAdar/best-model-try')
8
- reloaded_model.compile(optimizer=Adam(0.00001),
9
- loss='categorical_crossentropy',
10
- metrics=['accuracy']
11
- )
12
 
13
- def classify_image(image):
14
- # Resize the image to 224x224 as expected by your model
15
- image = tf.image.resize(image, (224, 224))
16
-
17
- # Add a batch dimension and make prediction
18
- image = tf.expand_dims(image, 0) # model expects a batch of images
19
- preds = reloaded_model.predict(image)
20
-
21
- # Assuming the output is a softmax layer, get the predicted class index
22
- predicted_class = tf.argmax(preds, axis=1).numpy()[0]
23
-
24
- # Optionally, convert class index to label if you have a mapping
25
- labels = ['Clams', 'Corals', 'Crabs', 'Dolphin', 'Eel', 'Fish',
26
- 'Jelly Fish', 'Lobster', 'Nudibranchs', 'Octopus', 'Otter',
27
- 'Penguin', 'Puffers', 'Sea Rays', 'Sea Urchins', 'Seahorse',
28
- 'Seal', 'Sharks', 'Shrimp', 'Squid', 'Starfish',
29
- 'Turtle_Tortoise', 'Whale'] # example labels
30
- return labels[predicted_class]
31
-
32
- import gradio as gr
33
-
34
- # Define the interface
35
- iface = gr.Interface(fn=classify_image, inputs="image", outputs="text")
36
-
37
- # Launch the application
38
- iface.launch()
 
 
 
 
 
1
  from huggingface_hub import from_pretrained_keras
2
 
3
+ model = from_pretrained_keras("keras-io/mobile-vit-xxs")
4
+ prediction = model.predict(image)
5
+ prediction = tf.squeeze(tf.round(prediction))
6
+ print(f'The image is a {classes[(np.argmax(prediction))]}!')
 
7
 
8
+ # The image is a sunflower!