Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import numpy as np | |
| # Define the getDateFeatures() function | |
| def getDateFeatures(df): | |
| df['holiday_type'] = 'Workday' | |
| df['is_holiday'] = False | |
| df['year'] = df['date'].dt.year | |
| df['month'] = df['date'].dt.month | |
| df['dayofmonth'] = df['date'].dt.day | |
| df['dayofweek'] = df['date'].dt.dayofweek | |
| df['weekofyear'] = df['date'].dt.weekofyear | |
| df['quarter'] = df['date'].dt.quarter | |
| df['is_month_start'] = df['date'].dt.is_month_start.astype(int) | |
| df['is_month_end'] = df['date'].dt.is_month_end.astype(int) | |
| df['is_quarter_start'] = df['date'].dt.is_quarter_start.astype(int) | |
| df['is_quarter_end'] = df['date'].dt.is_quarter_end.astype(int) | |
| df['is_year_start'] = df['date'].dt.is_year_start.astype(int) | |
| df['is_year_end'] = df['date'].dt.is_year_end.astype(int) | |
| # Extract the 'year' and 'weekofyear' components from the 'date' column | |
| df['year_weekofyear'] = df['date'].dt.year * 100 + df['date'].dt.weekofyear | |
| # create new coolumns to represent the cyclic nature of a year | |
| df['dayofyear'] = df['date'].dt.dayofyear | |
| df["sin(dayofyear)"] = np.sin(df["dayofyear"]) | |
| df["cos(dayofyear)"] = np.cos(df["dayofyear"]) | |
| df["is_weekend"] = np.where(df['dayofweek'] > 4, 1, 0) | |
| # Define the criteria for each season | |
| seasons = {'Winter': [12, 1, 2], 'Spring': [3, 4, 5], 'Summer': [6, 7, 8], 'Autumn': [9, 10, 11]} | |
| # Create the 'season' column based on the 'date' column | |
| df['season'] = df['month'].map({month: season for season, months in seasons.items() for month in months}) | |
| return df |