Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- app.py +8 -4
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -2,17 +2,21 @@ import gradio as gr
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 5 |
|
| 6 |
MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
|
|
|
|
| 7 |
|
| 8 |
-
# Load tokenizer
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 10 |
|
| 11 |
-
# Load model
|
| 12 |
-
|
| 13 |
-
|
| 14 |
torch_dtype=torch.float16,
|
| 15 |
)
|
|
|
|
|
|
|
| 16 |
|
| 17 |
@spaces.GPU
|
| 18 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
from peft import PeftModel
|
| 6 |
|
| 7 |
MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
|
| 8 |
+
BASE_MODEL_ID = "Qwen/Qwen2.5-Coder-1.5B-Instruct"
|
| 9 |
|
| 10 |
+
# Load tokenizer
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 12 |
|
| 13 |
+
# Load base model and apply adapter
|
| 14 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
BASE_MODEL_ID,
|
| 16 |
torch_dtype=torch.float16,
|
| 17 |
)
|
| 18 |
+
model = PeftModel.from_pretrained(base_model, MODEL_ID)
|
| 19 |
+
model = model.merge_and_unload() # Merge adapter for faster inference
|
| 20 |
|
| 21 |
@spaces.GPU
|
| 22 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ gradio>=5.0.0
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
accelerate
|
|
|
|
|
|
| 2 |
torch
|
| 3 |
transformers
|
| 4 |
accelerate
|
| 5 |
+
peft
|