GhostScientist commited on
Commit
57b9ad8
·
verified ·
1 Parent(s): 420f710

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -0
  2. app.py +36 -9
  3. requirements.txt +3 -1
README.md CHANGED
@@ -9,6 +9,7 @@ app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  short_description: Code assistant powered by fine-tuned Qwen 2.5 Coder
 
12
  ---
13
 
14
  # Qwen 2.5 Coder Assistant
 
9
  pinned: false
10
  license: apache-2.0
11
  short_description: Code assistant powered by fine-tuned Qwen 2.5 Coder
12
+ suggested_hardware: t4-small
13
  ---
14
 
15
  # Qwen 2.5 Coder Assistant
app.py CHANGED
@@ -1,9 +1,17 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
  MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
5
 
6
- client = InferenceClient(MODEL_ID)
 
 
 
 
 
 
7
 
8
  def respond(message, history, system_message, max_tokens, temperature, top_p):
9
  """Generate response using the fine-tuned Qwen coder model."""
@@ -17,16 +25,35 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
17
 
18
  messages.append({"role": "user", "content": message})
19
 
20
- response = ""
21
- for token in client.chat_completion(
22
  messages,
23
- max_tokens=max_tokens,
24
- stream=True,
 
 
 
 
 
 
 
 
 
 
25
  temperature=temperature,
26
  top_p=top_p,
27
- ):
28
- delta = token.choices[0].delta.content or ""
29
- response += delta
 
 
 
 
 
 
 
 
 
30
  yield response
31
 
32
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
4
+ from threading import Thread
5
 
6
  MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
7
 
8
+ # Load model and tokenizer
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ MODEL_ID,
12
+ torch_dtype=torch.float16,
13
+ device_map="auto",
14
+ )
15
 
16
  def respond(message, history, system_message, max_tokens, temperature, top_p):
17
  """Generate response using the fine-tuned Qwen coder model."""
 
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
+ # Apply chat template
29
+ text = tokenizer.apply_chat_template(
30
  messages,
31
+ tokenize=False,
32
+ add_generation_prompt=True
33
+ )
34
+ inputs = tokenizer([text], return_tensors="pt").to(model.device)
35
+
36
+ # Set up streaming
37
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
38
+
39
+ generation_kwargs = dict(
40
+ **inputs,
41
+ streamer=streamer,
42
+ max_new_tokens=int(max_tokens),
43
  temperature=temperature,
44
  top_p=top_p,
45
+ do_sample=True,
46
+ pad_token_id=tokenizer.eos_token_id,
47
+ )
48
+
49
+ # Run generation in a thread
50
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
51
+ thread.start()
52
+
53
+ # Stream the response
54
+ response = ""
55
+ for new_text in streamer:
56
+ response += new_text
57
  yield response
58
 
59
 
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  gradio>=5.0.0
2
- huggingface_hub>=0.26.0
 
 
 
1
  gradio>=5.0.0
2
+ torch
3
+ transformers
4
+ accelerate