Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- README.md +1 -0
- app.py +36 -9
- requirements.txt +3 -1
README.md
CHANGED
|
@@ -9,6 +9,7 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
short_description: Code assistant powered by fine-tuned Qwen 2.5 Coder
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Qwen 2.5 Coder Assistant
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
short_description: Code assistant powered by fine-tuned Qwen 2.5 Coder
|
| 12 |
+
suggested_hardware: t4-small
|
| 13 |
---
|
| 14 |
|
| 15 |
# Qwen 2.5 Coder Assistant
|
app.py
CHANGED
|
@@ -1,9 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 9 |
"""Generate response using the fine-tuned Qwen coder model."""
|
|
@@ -17,16 +25,35 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
| 17 |
|
| 18 |
messages.append({"role": "user", "content": message})
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
messages,
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
temperature=temperature,
|
| 26 |
top_p=top_p,
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
yield response
|
| 31 |
|
| 32 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
+
from threading import Thread
|
| 5 |
|
| 6 |
MODEL_ID = "GhostScientist/qwen25-coder-1.5b-codealpaca-sft"
|
| 7 |
|
| 8 |
+
# Load model and tokenizer
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
+
MODEL_ID,
|
| 12 |
+
torch_dtype=torch.float16,
|
| 13 |
+
device_map="auto",
|
| 14 |
+
)
|
| 15 |
|
| 16 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 17 |
"""Generate response using the fine-tuned Qwen coder model."""
|
|
|
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
+
# Apply chat template
|
| 29 |
+
text = tokenizer.apply_chat_template(
|
| 30 |
messages,
|
| 31 |
+
tokenize=False,
|
| 32 |
+
add_generation_prompt=True
|
| 33 |
+
)
|
| 34 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 35 |
+
|
| 36 |
+
# Set up streaming
|
| 37 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
+
generation_kwargs = dict(
|
| 40 |
+
**inputs,
|
| 41 |
+
streamer=streamer,
|
| 42 |
+
max_new_tokens=int(max_tokens),
|
| 43 |
temperature=temperature,
|
| 44 |
top_p=top_p,
|
| 45 |
+
do_sample=True,
|
| 46 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Run generation in a thread
|
| 50 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 51 |
+
thread.start()
|
| 52 |
+
|
| 53 |
+
# Stream the response
|
| 54 |
+
response = ""
|
| 55 |
+
for new_text in streamer:
|
| 56 |
+
response += new_text
|
| 57 |
yield response
|
| 58 |
|
| 59 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
gradio>=5.0.0
|
| 2 |
-
|
|
|
|
|
|
|
|
|
| 1 |
gradio>=5.0.0
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|