Spaces:
Running
Running
[OCR API] Reverted.
Browse files
main.py
CHANGED
@@ -2,76 +2,47 @@ from fastapi import FastAPI, Query
|
|
2 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
5 |
-
import requests
|
6 |
-
from PIL import Image
|
7 |
-
from io import BytesIO
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# Load model and processor
|
12 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
13 |
-
|
14 |
-
|
15 |
-
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
16 |
-
|
17 |
processor = AutoProcessor.from_pretrained(
|
18 |
checkpoint,
|
19 |
-
min_pixels=
|
20 |
-
max_pixels=
|
21 |
)
|
22 |
-
|
23 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
24 |
checkpoint,
|
25 |
-
torch_dtype=torch.
|
26 |
-
device_map=
|
27 |
-
attn_implementation="flash_attention_2",
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
# Function to load and resize images (reduces processing time)
|
32 |
-
def load_and_resize_image(image_url):
|
33 |
-
response = requests.get(image_url)
|
34 |
-
image = Image.open(BytesIO(response.content)).convert("RGB")
|
35 |
-
image = image.resize((512, 512)) # Resize to 512x512 to speed up processing
|
36 |
-
return image
|
37 |
-
|
38 |
-
|
39 |
@app.get("/")
|
40 |
def read_root():
|
41 |
return {"message": "API is live. Use the /predict endpoint."}
|
42 |
|
43 |
-
|
44 |
@app.get("/predict")
|
45 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
46 |
messages = [
|
47 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
48 |
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
|
49 |
]
|
50 |
-
|
51 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
52 |
-
|
53 |
-
# Process image
|
54 |
-
image_inputs = [load_and_resize_image(image_url)]
|
55 |
-
video_inputs = None
|
56 |
-
|
57 |
-
# Process inputs
|
58 |
inputs = processor(
|
59 |
text=[text],
|
60 |
images=image_inputs,
|
61 |
videos=video_inputs,
|
62 |
padding=True,
|
63 |
-
truncation=True, # Ensures token limit
|
64 |
-
max_length=512, # Prevents excessive memory usage
|
65 |
return_tensors="pt",
|
66 |
-
).to(device)
|
67 |
-
|
68 |
-
# Generate response
|
69 |
with torch.no_grad():
|
70 |
-
generated_ids = model.generate(**inputs, max_new_tokens=
|
71 |
-
|
72 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
73 |
output_texts = processor.batch_decode(
|
74 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
75 |
)
|
76 |
-
|
77 |
return {"response": output_texts[0]}
|
|
|
2 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
8 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
9 |
+
min_pixels = 256*28*28
|
10 |
+
max_pixels = 1280*28*28
|
|
|
|
|
11 |
processor = AutoProcessor.from_pretrained(
|
12 |
checkpoint,
|
13 |
+
min_pixels=min_pixels,
|
14 |
+
max_pixels=max_pixels
|
15 |
)
|
|
|
16 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
17 |
checkpoint,
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto",
|
20 |
+
# attn_implementation="flash_attention_2",
|
21 |
)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@app.get("/")
|
24 |
def read_root():
|
25 |
return {"message": "API is live. Use the /predict endpoint."}
|
26 |
|
|
|
27 |
@app.get("/predict")
|
28 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
29 |
messages = [
|
30 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
31 |
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
|
32 |
]
|
|
|
33 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
34 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
|
|
|
|
|
|
|
|
|
|
35 |
inputs = processor(
|
36 |
text=[text],
|
37 |
images=image_inputs,
|
38 |
videos=video_inputs,
|
39 |
padding=True,
|
|
|
|
|
40 |
return_tensors="pt",
|
41 |
+
).to(model.device)
|
|
|
|
|
42 |
with torch.no_grad():
|
43 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
|
|
44 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
45 |
output_texts = processor.batch_decode(
|
46 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
47 |
)
|
|
|
48 |
return {"response": output_texts[0]}
|