r3gm's picture
Upload 340 files
3b7b011
raw
history blame
6.83 kB
import gc
import requests
import subprocess
import sys
import os, warnings, librosa
import soundfile as sf
import numpy as np
import torch
import json
folder = os.path.dirname(os.path.abspath(__file__))
folder = os.path.dirname(folder)
folder = os.path.dirname(folder)
folder = os.path.dirname(folder)
now_dir = os.path.dirname(folder)
import sys
sys.path.append(now_dir)
import lib.infer.infer_libs.uvr5_pack.mdx as mdx
branch = "https://github.com/NaJeongMo/Colab-for-MDX_B"
model_params = "https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/model_data.json"
_Models = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
# _models = "https://pastebin.com/raw/jBzYB8vz"
_models = "https://raw.githubusercontent.com/TRvlvr/application_data/main/filelists/download_checks.json"
file_folder = "Colab-for-MDX_B"
model_request = requests.get(_models).json()
model_ids = model_request["mdx_download_list"].values()
demucs_download_list = model_request["demucs_download_list"]
# Iterate through the keys and get the model names
model_ids_demucs_inpure = [name.split(":")[1].strip() for name in demucs_download_list.keys()]
# Remove duplicates by converting the list to a set and then back to a list
model_ids_demucs = list(set(model_ids_demucs_inpure))
# Remove some not working models
demucs_ids_to_delete = ["tasnet_extra", "tasnet", "light_extra", "light", "demucs_extra", "demucs", "demucs_unittest", "demucs48_hq", "repro_mdx_a_hybrid_only", "repro_mdx_a_time_only", "repro_mdx_a", "UVR Model"]
# Add some models that are not in the list
demucs_ids_to_add = ["SIG"]
# Add the new ID to the model_ids_demucs list
for demucs_ids_to_add in demucs_ids_to_add:
if demucs_ids_to_add not in model_ids_demucs:
model_ids_demucs.append(demucs_ids_to_add)
# If the ID is in the list of IDs to delete, remove it from the list of model_ids_demucs
for demucs_ids_to_delete in demucs_ids_to_delete:
if demucs_ids_to_delete in model_ids_demucs:
model_ids_demucs.remove(demucs_ids_to_delete)
#print(model_ids)
model_params = requests.get(model_params).json()
#Remove request for stem_naming
stem_naming = {
"Vocals": "Instrumental",
"Other": "Instruments",
"Instrumental": "Vocals",
"Drums": "Drumless",
"Bass": "Bassless"
}
os.makedirs(f"{now_dir}/assets/uvr5_weights/MDX", exist_ok=True)
warnings.filterwarnings("ignore")
cpu = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda:0")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
def get_model_list():
return model_ids
def get_demucs_model_list():
return model_ids_demucs
def id_to_ptm(mkey):
if mkey in model_ids:
#print(mkey)
mpath = f"{now_dir}/assets/uvr5_weights/MDX/{mkey}"
if not os.path.exists(f'{now_dir}/assets/uvr5_weights/MDX/{mkey}'):
print('Downloading model...',end=' ')
subprocess.run(
["python", "-m", "wget", "-o", mpath, _Models+mkey]
)
print(f'saved to {mpath}')
return mpath
else:
return mpath
else:
mpath = f'{now_dir}/assets/uvr5_weights/{mkey}'
return mpath
def prepare_mdx(onnx,custom_param=False, dim_f=None, dim_t=None, n_fft=None, stem_name=None, compensation=None):
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
if custom_param:
assert not (dim_f is None or dim_t is None or n_fft is None or compensation is None), 'Custom parameter selected, but incomplete parameters are provided.'
mdx_model = mdx.MDX_Model(
device,
dim_f = dim_f,
dim_t = dim_t,
n_fft = n_fft,
stem_name=stem_name,
compensation=compensation
)
else:
model_hash = mdx.MDX.get_hash(onnx)
if model_hash in model_params:
mp = model_params.get(model_hash)
mdx_model = mdx.MDX_Model(
device,
dim_f = mp["mdx_dim_f_set"],
dim_t = 2**mp["mdx_dim_t_set"],
n_fft = mp["mdx_n_fft_scale_set"],
stem_name=mp["primary_stem"],
compensation=compensation if not custom_param and compensation is not None else mp["compensate"]
)
return mdx_model
def run_mdx(onnx, mdx_model,filename, output_format='wav',diff=False,suffix=None,diff_suffix=None, denoise=False, m_threads=2):
mdx_sess = mdx.MDX(onnx,mdx_model)
print(f"Processing: {filename}")
if filename.lower().endswith('.wav'):
wave, sr = librosa.load(filename, mono=False, sr=44100)
else:
temp_wav = 'temp_audio.wav'
subprocess.run(['ffmpeg', '-i', filename, '-ar', '44100', '-ac', '2', temp_wav]) # Convert to WAV format
wave, sr = librosa.load(temp_wav, mono=False, sr=44100)
os.remove(temp_wav)
#wave, sr = librosa.load(filename,mono=False, sr=44100)
# normalizing input wave gives better output
peak = max(np.max(wave), abs(np.min(wave)))
wave /= peak
if denoise:
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
wave_processed *= 0.5
else:
wave_processed = mdx_sess.process_wave(wave, m_threads)
# return to previous peak
wave_processed *= peak
stem_name = mdx_model.stem_name if suffix is None else suffix # use suffix if provided
save_path = os.path.basename(os.path.splitext(filename)[0])
#vocals_save_path = os.path.join(vocals_folder, f"{save_path}_{stem_name}.{output_format}")
#instrumental_save_path = os.path.join(instrumental_folder, f"{save_path}_{stem_name}.{output_format}")
save_path = f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.{output_format}"
save_path = os.path.join(
'audios',
save_path
)
sf.write(
save_path,
wave_processed.T,
sr
)
print(f'done, saved to: {save_path}')
if diff:
diff_stem_name = stem_naming.get(stem_name) if diff_suffix is None else diff_suffix # use suffix if provided
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
save_path = f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.{output_format}"
save_path = os.path.join(
'audio-others',
save_path
)
sf.write(
save_path,
(-wave_processed.T*mdx_model.compensation)+wave.T,
sr
)
print(f'invert done, saved to: {save_path}')
del mdx_sess, wave_processed, wave
gc.collect()
if __name__ == "__main__":
print()