Spaces:
Sleeping
Sleeping
import gc | |
import requests | |
import subprocess | |
import sys | |
import os, warnings, librosa | |
import soundfile as sf | |
import numpy as np | |
import torch | |
import json | |
folder = os.path.dirname(os.path.abspath(__file__)) | |
folder = os.path.dirname(folder) | |
folder = os.path.dirname(folder) | |
folder = os.path.dirname(folder) | |
now_dir = os.path.dirname(folder) | |
import sys | |
sys.path.append(now_dir) | |
import lib.infer.infer_libs.uvr5_pack.mdx as mdx | |
branch = "https://github.com/NaJeongMo/Colab-for-MDX_B" | |
model_params = "https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/model_data.json" | |
_Models = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/" | |
# _models = "https://pastebin.com/raw/jBzYB8vz" | |
_models = "https://raw.githubusercontent.com/TRvlvr/application_data/main/filelists/download_checks.json" | |
file_folder = "Colab-for-MDX_B" | |
model_request = requests.get(_models).json() | |
model_ids = model_request["mdx_download_list"].values() | |
demucs_download_list = model_request["demucs_download_list"] | |
# Iterate through the keys and get the model names | |
model_ids_demucs_inpure = [name.split(":")[1].strip() for name in demucs_download_list.keys()] | |
# Remove duplicates by converting the list to a set and then back to a list | |
model_ids_demucs = list(set(model_ids_demucs_inpure)) | |
# Remove some not working models | |
demucs_ids_to_delete = ["tasnet_extra", "tasnet", "light_extra", "light", "demucs_extra", "demucs", "demucs_unittest", "demucs48_hq", "repro_mdx_a_hybrid_only", "repro_mdx_a_time_only", "repro_mdx_a", "UVR Model"] | |
# Add some models that are not in the list | |
demucs_ids_to_add = ["SIG"] | |
# Add the new ID to the model_ids_demucs list | |
for demucs_ids_to_add in demucs_ids_to_add: | |
if demucs_ids_to_add not in model_ids_demucs: | |
model_ids_demucs.append(demucs_ids_to_add) | |
# If the ID is in the list of IDs to delete, remove it from the list of model_ids_demucs | |
for demucs_ids_to_delete in demucs_ids_to_delete: | |
if demucs_ids_to_delete in model_ids_demucs: | |
model_ids_demucs.remove(demucs_ids_to_delete) | |
#print(model_ids) | |
model_params = requests.get(model_params).json() | |
#Remove request for stem_naming | |
stem_naming = { | |
"Vocals": "Instrumental", | |
"Other": "Instruments", | |
"Instrumental": "Vocals", | |
"Drums": "Drumless", | |
"Bass": "Bassless" | |
} | |
os.makedirs(f"{now_dir}/assets/uvr5_weights/MDX", exist_ok=True) | |
warnings.filterwarnings("ignore") | |
cpu = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
def get_model_list(): | |
return model_ids | |
def get_demucs_model_list(): | |
return model_ids_demucs | |
def id_to_ptm(mkey): | |
if mkey in model_ids: | |
#print(mkey) | |
mpath = f"{now_dir}/assets/uvr5_weights/MDX/{mkey}" | |
if not os.path.exists(f'{now_dir}/assets/uvr5_weights/MDX/{mkey}'): | |
print('Downloading model...',end=' ') | |
subprocess.run( | |
["python", "-m", "wget", "-o", mpath, _Models+mkey] | |
) | |
print(f'saved to {mpath}') | |
return mpath | |
else: | |
return mpath | |
else: | |
mpath = f'{now_dir}/assets/uvr5_weights/{mkey}' | |
return mpath | |
def prepare_mdx(onnx,custom_param=False, dim_f=None, dim_t=None, n_fft=None, stem_name=None, compensation=None): | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
if custom_param: | |
assert not (dim_f is None or dim_t is None or n_fft is None or compensation is None), 'Custom parameter selected, but incomplete parameters are provided.' | |
mdx_model = mdx.MDX_Model( | |
device, | |
dim_f = dim_f, | |
dim_t = dim_t, | |
n_fft = n_fft, | |
stem_name=stem_name, | |
compensation=compensation | |
) | |
else: | |
model_hash = mdx.MDX.get_hash(onnx) | |
if model_hash in model_params: | |
mp = model_params.get(model_hash) | |
mdx_model = mdx.MDX_Model( | |
device, | |
dim_f = mp["mdx_dim_f_set"], | |
dim_t = 2**mp["mdx_dim_t_set"], | |
n_fft = mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=compensation if not custom_param and compensation is not None else mp["compensate"] | |
) | |
return mdx_model | |
def run_mdx(onnx, mdx_model,filename, output_format='wav',diff=False,suffix=None,diff_suffix=None, denoise=False, m_threads=2): | |
mdx_sess = mdx.MDX(onnx,mdx_model) | |
print(f"Processing: {filename}") | |
if filename.lower().endswith('.wav'): | |
wave, sr = librosa.load(filename, mono=False, sr=44100) | |
else: | |
temp_wav = 'temp_audio.wav' | |
subprocess.run(['ffmpeg', '-i', filename, '-ar', '44100', '-ac', '2', temp_wav]) # Convert to WAV format | |
wave, sr = librosa.load(temp_wav, mono=False, sr=44100) | |
os.remove(temp_wav) | |
#wave, sr = librosa.load(filename,mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = mdx_model.stem_name if suffix is None else suffix # use suffix if provided | |
save_path = os.path.basename(os.path.splitext(filename)[0]) | |
#vocals_save_path = os.path.join(vocals_folder, f"{save_path}_{stem_name}.{output_format}") | |
#instrumental_save_path = os.path.join(instrumental_folder, f"{save_path}_{stem_name}.{output_format}") | |
save_path = f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.{output_format}" | |
save_path = os.path.join( | |
'audios', | |
save_path | |
) | |
sf.write( | |
save_path, | |
wave_processed.T, | |
sr | |
) | |
print(f'done, saved to: {save_path}') | |
if diff: | |
diff_stem_name = stem_naming.get(stem_name) if diff_suffix is None else diff_suffix # use suffix if provided | |
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name | |
save_path = f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.{output_format}" | |
save_path = os.path.join( | |
'audio-others', | |
save_path | |
) | |
sf.write( | |
save_path, | |
(-wave_processed.T*mdx_model.compensation)+wave.T, | |
sr | |
) | |
print(f'invert done, saved to: {save_path}') | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
if __name__ == "__main__": | |
print() | |