Spaces:
Runtime error
Runtime error
Deploy Gradio app with multiple files
Browse files- app.py +53 -0
- models.py +141 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import models
|
| 3 |
+
|
| 4 |
+
# Global flag to ensure models are loaded and compiled only once
|
| 5 |
+
# In a multi-file setup, load_and_compile_models should be called once globally
|
| 6 |
+
# before the Gradio app is launched.
|
| 7 |
+
# This assumes models.py gets imported and its global functions run.
|
| 8 |
+
# Alternatively, it could be called within a gr.Blocks.load event, but that's per-session.
|
| 9 |
+
# For AoT, it must be during startup.
|
| 10 |
+
|
| 11 |
+
with gr.Blocks(css=".container { max-width: 1200px; margin: auto; }") as demo:
|
| 12 |
+
gr.HTML("""
|
| 13 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 14 |
+
<h1 style="font-size: 2.5em; color: #333;">π¨ SDXL IP-Adapter Image Remixer</h1>
|
| 15 |
+
<p style="font-size: 1.1em; color: #555;">Drag up to three reference images, add a text prompt, and let the AI remix them into something new!</p>
|
| 16 |
+
<p style="font-size: 0.9em; color: #777;">Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #007bff; text-decoration: none;">anycoder</a></p>
|
| 17 |
+
</div>
|
| 18 |
+
""")
|
| 19 |
+
|
| 20 |
+
with gr.Column(elem_classes="container"):
|
| 21 |
+
with gr.Row():
|
| 22 |
+
image_input_1 = gr.Image(label="Reference Image 1 (Optional)", type="pil", height=256, sources=["upload", "clipboard"], interactive=True)
|
| 23 |
+
image_input_2 = gr.Image(label="Reference Image 2 (Optional)", type="pil", height=256, sources=["upload", "clipboard"], interactive=True)
|
| 24 |
+
image_input_3 = gr.Image(label="Reference Image 3 (Optional)", type="pil", height=256, sources=["upload", "clipboard"], interactive=True)
|
| 25 |
+
|
| 26 |
+
prompt_input = gr.Textbox(
|
| 27 |
+
label="Prompt",
|
| 28 |
+
placeholder="A whimsical creature made of clouds and starlight, fantastical, vivid colors, highly detailed, 4k",
|
| 29 |
+
lines=2,
|
| 30 |
+
interactive=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
generate_btn = gr.Button("Remix Images", variant="primary")
|
| 34 |
+
|
| 35 |
+
output_gallery = gr.Gallery(
|
| 36 |
+
label="Generated Images",
|
| 37 |
+
columns=2, rows=1, height=512, object_fit="contain",
|
| 38 |
+
allow_preview=True,
|
| 39 |
+
interactive=False,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Event listener for the generate button
|
| 43 |
+
generate_btn.click(
|
| 44 |
+
fn=models.remix_images,
|
| 45 |
+
inputs=[prompt_input, image_input_1, image_input_2, image_input_3],
|
| 46 |
+
outputs=output_gallery,
|
| 47 |
+
api_name="remix_images",
|
| 48 |
+
queue=True,
|
| 49 |
+
show_progress="full",
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
demo.launch(max_threads=10)
|
models.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 4 |
+
from ip_adapter import IPAdapter
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# --- Configuration Constants ---
|
| 9 |
+
SDXL_BASE_MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 10 |
+
IP_ADAPTER_MODEL_ID = "h94/IP-Adapter-Plus-SDXL"
|
| 11 |
+
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sdxl_vit-h.bin"
|
| 12 |
+
|
| 13 |
+
# --- Global Model Instances ---
|
| 14 |
+
# These will be initialized and compiled during startup
|
| 15 |
+
pipe_global: DiffusionPipeline = None
|
| 16 |
+
ip_adapter_global: IPAdapter = None
|
| 17 |
+
|
| 18 |
+
@spaces.GPU(duration=1500) # Allocate maximum time for startup compilation
|
| 19 |
+
def load_and_compile_models():
|
| 20 |
+
"""
|
| 21 |
+
Loads the SDXL and IP-Adapter models and performs Ahead-of-Time (AoT) compilation
|
| 22 |
+
of the UNet for performance optimization using ZeroGPU.
|
| 23 |
+
This function is called once during application startup.
|
| 24 |
+
"""
|
| 25 |
+
global pipe_global, ip_adapter_global
|
| 26 |
+
|
| 27 |
+
print("π Starting model loading and compilation...")
|
| 28 |
+
|
| 29 |
+
# 1. Load SDXL base pipeline
|
| 30 |
+
print(f"Loading SDXL base model: {SDXL_BASE_MODEL_ID}")
|
| 31 |
+
pipe_global = DiffusionPipeline.from_pretrained(
|
| 32 |
+
SDXL_BASE_MODEL_ID,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
add_watermarker=False, # Disable watermarking for potential speedup
|
| 35 |
+
variant="fp16" # Use fp16 variant if available for better performance
|
| 36 |
+
)
|
| 37 |
+
# Load VAE separately as recommended for stabilityai models
|
| 38 |
+
pipe_global.vae = AutoencoderKL.from_pretrained(
|
| 39 |
+
"stabilityai/sdxl-vae", torch_dtype=torch.float16, variant="fp16"
|
| 40 |
+
)
|
| 41 |
+
pipe_global.to("cuda")
|
| 42 |
+
print("SDXL base model loaded and moved to CUDA.")
|
| 43 |
+
|
| 44 |
+
# 2. Load IP-Adapter
|
| 45 |
+
print(f"Loading IP-Adapter from: {IP_ADAPTER_MODEL_ID}/{IP_ADAPTER_WEIGHT_NAME}")
|
| 46 |
+
ip_adapter_global = IPAdapter(
|
| 47 |
+
pipe_global,
|
| 48 |
+
image_encoder_path=IP_ADAPTER_MODEL_ID,
|
| 49 |
+
ip_ckpt=IP_ADAPTER_WEIGHT_NAME,
|
| 50 |
+
device="cuda"
|
| 51 |
+
)
|
| 52 |
+
print("IP-Adapter loaded and integrated into the pipeline.")
|
| 53 |
+
|
| 54 |
+
# 3. Perform AoT compilation for the UNet (main generation component)
|
| 55 |
+
print("Starting Ahead-of-Time (AoT) compilation for pipe_global.unet with IP-Adapter...")
|
| 56 |
+
|
| 57 |
+
# Prepare dummy inputs for capturing UNet's forward pass.
|
| 58 |
+
# We need to call a function that internally uses pipe_global.unet
|
| 59 |
+
# and has IP-Adapter inputs integrated. The `ip_adapter_global.generate` method
|
| 60 |
+
# is designed for this. We use minimal steps for tracing.
|
| 61 |
+
dummy_prompt = "a photorealistic image of a beautiful landscape"
|
| 62 |
+
dummy_ip_image = Image.new('RGB', (224, 224), color = 'red') # IP-Adapter typically uses 224x224 or 256x256 input
|
| 63 |
+
|
| 64 |
+
with spaces.aoti_capture(ip_adapter_global.pipe.unet) as call:
|
| 65 |
+
# Execute a minimal generation using the IP-Adapter's generate method.
|
| 66 |
+
# This will trigger the forward pass of `pipe_global.unet` with
|
| 67 |
+
# all the necessary IP-Adapter embeddings, allowing `aoti_capture` to trace it.
|
| 68 |
+
_ = ip_adapter_global.generate(
|
| 69 |
+
prompt=dummy_prompt,
|
| 70 |
+
images=[dummy_ip_image], # Provide a dummy image to trace the IP-Adapter path
|
| 71 |
+
height=1024, width=1024,
|
| 72 |
+
num_inference_steps=2, # Use minimal steps for fast tracing
|
| 73 |
+
guidance_scale=7.5,
|
| 74 |
+
num_images_per_prompt=1,
|
| 75 |
+
output_type="pil",
|
| 76 |
+
).images[0]
|
| 77 |
+
|
| 78 |
+
# Export the captured UNet module
|
| 79 |
+
print("Exporting UNet...")
|
| 80 |
+
exported_unet = torch.export.export(
|
| 81 |
+
ip_adapter_global.pipe.unet,
|
| 82 |
+
args=call.args,
|
| 83 |
+
kwargs=call.kwargs,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Compile the exported UNet module
|
| 87 |
+
print("Compiling UNet...")
|
| 88 |
+
compiled_unet = spaces.aoti_compile(exported_unet)
|
| 89 |
+
print("UNet compilation complete.")
|
| 90 |
+
|
| 91 |
+
# Apply the compiled module back to the pipeline's UNet
|
| 92 |
+
spaces.aoti_apply(compiled_unet, ip_adapter_global.pipe.unet)
|
| 93 |
+
print("AoT compiled UNet applied to the pipeline.")
|
| 94 |
+
print("β
Models loaded and compiled successfully!")
|
| 95 |
+
|
| 96 |
+
# Call the loading and compilation function once when this module is imported
|
| 97 |
+
load_and_compile_models()
|
| 98 |
+
|
| 99 |
+
@spaces.GPU(duration=60) # Allocate up to 60 seconds for actual image generation
|
| 100 |
+
def remix_images(
|
| 101 |
+
prompt: str,
|
| 102 |
+
image1: Image.Image | None,
|
| 103 |
+
image2: Image.Image | None,
|
| 104 |
+
image3: Image.Image | None
|
| 105 |
+
) -> list[Image.Image]:
|
| 106 |
+
"""
|
| 107 |
+
Generates images based on a text prompt and up to three input images using SDXL with IP-Adapter.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
prompt (str): The text prompt for image generation.
|
| 111 |
+
image1 (PIL.Image.Image | None): The first input image.
|
| 112 |
+
image2 (PIL.Image.Image | None): The second input image.
|
| 113 |
+
image3 (PIL.Image.Image | None): The third input image.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
list[PIL.Image.Image]: A list of generated images.
|
| 117 |
+
"""
|
| 118 |
+
if not prompt:
|
| 119 |
+
raise gr.Error("Prompt cannot be empty! Please provide a textual description.")
|
| 120 |
+
|
| 121 |
+
# Filter out None images to create a list of valid input images
|
| 122 |
+
input_images = [img for img in [image1, image2, image3] if img is not None]
|
| 123 |
+
|
| 124 |
+
print(f"Generating image(s) for prompt: '{prompt}'")
|
| 125 |
+
print(f"Using {len(input_images)} input images for IP-Adapter.")
|
| 126 |
+
|
| 127 |
+
# Call the IP-Adapter's generate method.
|
| 128 |
+
# The `ip-adapter` library's `generate` method is designed to handle
|
| 129 |
+
# an empty `images` list by falling back to pure text-to-image generation.
|
| 130 |
+
generated_images = ip_adapter_global.generate(
|
| 131 |
+
prompt=prompt,
|
| 132 |
+
images=input_images, # This can be an empty list
|
| 133 |
+
height=1024, width=1024,
|
| 134 |
+
num_inference_steps=30, # Standard number of inference steps
|
| 135 |
+
guidance_scale=7.5, # Classifier-free guidance scale
|
| 136 |
+
num_images_per_prompt=1, # Generate one image per request
|
| 137 |
+
output_type="pil", # Ensure output is PIL Image objects
|
| 138 |
+
# No seed is used as per requirement
|
| 139 |
+
).images
|
| 140 |
+
|
| 141 |
+
return generated_images
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
git+https://github.com/huggingface/diffusers
|
| 4 |
+
git+https://github.com/huggingface/transformers
|
| 5 |
+
accelerate
|
| 6 |
+
Pillow
|
| 7 |
+
safetensors
|
| 8 |
+
xformers
|
| 9 |
+
spaces
|
| 10 |
+
ip-adapter
|