GeoQuery / backend /services /executor.py
GerardCB's picture
Deploy to Spaces (Final Clean)
4851501
"""
Query Executor Service
Handles query processing with intent detection, data querying, and response generation.
Uses semantic search for scalable dataset discovery and session-scoped layer storage.
"""
from backend.core.llm_gateway import LLMGateway
from backend.services.data_loader import get_data_loader
from backend.core.geo_engine import get_geo_engine
from backend.services.response_formatter import ResponseFormatter
from backend.core.session_store import get_session_store
from backend.core.semantic_search import get_semantic_search
from backend.core.data_catalog import get_data_catalog
from backend.core.query_planner import get_query_planner
from typing import List, Dict, Any, Optional
import json
import datetime
import uuid
import logging
logger = logging.getLogger(__name__)
# Default session ID for backward compatibility
DEFAULT_SESSION_ID = "default-session"
class QueryExecutor:
def __init__(self):
self.llm = LLMGateway()
self.data_loader = get_data_loader()
self.geo_engine = get_geo_engine()
self.session_store = get_session_store()
self.semantic_search = get_semantic_search()
self.catalog = get_data_catalog()
self.query_planner = get_query_planner()
def _get_schema_context(self) -> str:
"""Returns the database schema for the LLM context."""
return self.data_loader.get_schema_context()
async def process_query_with_context(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""
Orchestrates the full query processing flow with conversation context.
"""
# 1. Detect intent
intent = await self.llm.detect_intent(query, history)
print(f"[GeoQuery] Detected intent: {intent}")
# 2. Route based on intent
if intent == "GENERAL_CHAT":
return await self._handle_general_chat(query, history)
elif intent in ["DATA_QUERY", "MAP_REQUEST"]:
# Always include map for data queries - the visual is helpful
return await self._handle_data_query(query, history, include_map=True)
elif intent == "SPATIAL_OP":
return await self._handle_spatial_op(query, history)
elif intent == "STAT_QUERY":
return await self._handle_stat_query(query, history)
else:
return await self._handle_general_chat(query, history)
async def process_query_stream(self, query: str, history: List[Dict[str, str]]):
"""
Streamable version of process_query_with_context.
Yields: {"event": "status"|"thought"|"chunk"|"result", "data": ...}
"""
# 1. Intent Detection with Thoughts
yield {"event": "status", "data": json.dumps({"status": "๐Ÿง  Understanding intent..."})}
intent = "GENERAL_CHAT"
intent_buffer = ""
try:
async for chunk in self.llm.stream_intent(query, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
intent_buffer += chunk["text"]
except Exception as e:
print(f"Intent stream error: {e}")
intent = intent_buffer.strip().upper()
if not intent:
intent = "GENERAL_CHAT"
# Clean up intent string
for valid in ["GENERAL_CHAT", "DATA_QUERY", "MAP_REQUEST", "SPATIAL_OP", "STAT_QUERY"]:
if valid in intent:
intent = valid
break
yield {"event": "intent", "data": json.dumps({"intent": intent})}
print(f"[GeoQuery] Detected intent: {intent}")
if intent == "GENERAL_CHAT":
async for chunk in self.llm.generate_response_stream(query, history):
# Transform to frontend protocol
if chunk.get("type") == "content":
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk.get("text")})}
elif chunk.get("type") == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk.get("content")})}
# Send final result to clear loading status
yield {"event": "result", "data": json.dumps({"response": ""})}
return
# Handle Data/Map/Stat Queries together via a unified stream handler
if intent in ["DATA_QUERY", "MAP_REQUEST", "STAT_QUERY"]:
include_map = intent != "STAT_QUERY"
session_id = DEFAULT_SESSION_ID # TODO: Get from request context
# 0. Check query complexity
complexity = self.query_planner.detect_complexity(query)
if complexity["is_complex"]:
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ”„ Complex query detected, planning steps..."})}
logger.info(f"Complex query detected: {complexity['reason']}")
# Use multi-step executor
async for event in self._execute_multi_step_query(query, history, include_map, session_id):
yield event
return
# Simple query - continue with existing flow
# 0. Semantic Discovery (scalable pre-filter)
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ“š Searching data catalog..."})}
# Use semantic search to find top candidates
candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
if candidate_tables:
# Get focused summaries for LLM refinement
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
else:
# Fallback to all summaries (legacy behavior for small catalogs)
candidate_summaries = self.catalog.get_all_table_summaries()
# 1. LLM refines from candidates
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ” Identifying relevant tables..."})}
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
# 2. Lazy Load
if relevant_tables:
yield {"event": "status", "data": json.dumps({"status": f"๐Ÿ’พ Loading tables: {', '.join(relevant_tables)}..."})}
feature_tables = []
for table in relevant_tables:
if self.geo_engine.ensure_table_loaded(table):
feature_tables.append(table)
# 3. Schema
table_schema = self.geo_engine.get_table_schemas()
# 4. Generate SQL (Streaming Thoughts!)
yield {"event": "status", "data": json.dumps({"status": "โœ๏ธ Writing SQL query..."})}
sql_buffer = ""
async for chunk in self.llm.stream_analytical_sql(query, table_schema, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
sql_buffer += chunk["text"]
sql = sql_buffer.replace("```sql", "").replace("```", "").strip()
# 5. Check for DATA_UNAVAILABLE error from LLM
if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
yield {"event": "status", "data": json.dumps({"status": "โ„น๏ธ Data not available"})}
requested = "the requested data"
available = "administrative boundaries (provinces, districts, corregimientos)"
for line in sql.split("\n"):
if "Requested:" in line:
requested = line.split("Requested:")[-1].strip()
elif "Available:" in line:
available = line.split("Available:")[-1].strip()
error_response = f"""I couldn't find data for **{requested}** in the current database.
**Available datasets include:**
- {available}
If you need additional data, please let me know and I can help you understand what's currently available or suggest alternative queries."""
yield {
"event": "result",
"data": json.dumps({
"response": error_response,
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 6. Execute query
yield {"event": "status", "data": json.dumps({"status": "โšก Executing query..."})}
geojson = None
features = []
error_message = None
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
yield {"event": "status", "data": json.dumps({"status": f"โœ… Found {len(features)} results"})}
except Exception as e:
error_message = str(e)
yield {"event": "status", "data": json.dumps({"status": "โš ๏ธ Query error, attempting repair..."})}
try:
sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
print(f"Repair failed: {e2}")
if error_message:
yield {
"event": "result",
"data": json.dumps({
"response": f"I was unable to process your request because the data query failed. \n\nError details: {error_message}",
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 7. Post-process using ResponseFormatter
citations = ResponseFormatter.generate_citations(relevant_tables, features)
# Chart
chart_data = ResponseFormatter.generate_chart_data(sql, features)
if intent == "STAT_QUERY" and not chart_data and features:
chart_data = ResponseFormatter.generate_chart_data("GROUP BY forced", features)
# Raw Data
raw_data = ResponseFormatter.prepare_raw_data(features)
# Map Config
if include_map and features and geojson:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "๐Ÿ“")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer: {e}")
# 8. Explanation (Streaming!)
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ’ฌ Generating explanation..."})}
data_summary = ResponseFormatter.generate_data_summary(features)
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# 9. Final Result Event
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"chart_data": chart_data,
"raw_data": raw_data,
"data_citations": citations
})}
elif intent == "SPATIAL_OP":
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ“ Preparing spatial operation..."})}
session_id = DEFAULT_SESSION_ID # TODO: Get from request context
# 0. Semantic Discovery for base tables
candidate_tables = self.semantic_search.search_table_names(query, top_k=15)
if candidate_tables:
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
else:
candidate_summaries = self.catalog.get_all_table_summaries()
# 1. Identify relevant base tables from query
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
# 2. Lazy load those tables
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
# 3. Get schema of loaded base tables
base_table_schema = self.geo_engine.get_table_schemas()
# 4. Prepare Layer Context (user-created layers from session)
session_layers = self.session_store.get_layers(session_id)
layer_context = "User-Created Layers:\n"
if not session_layers:
layer_context += "(No user layers created yet.)\n"
else:
for i, layer in enumerate(session_layers):
layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
# 5. Combine both contexts for LLM
full_context = f"{base_table_schema}\n\n{layer_context}"
# 6. Generate Spatial SQL
yield {"event": "status", "data": json.dumps({"status": "โœ๏ธ Writing spatial SQL..."})}
sql = await self.llm.generate_spatial_sql(query, full_context, history)
# 7. Execute
yield {"event": "status", "data": json.dumps({"status": "โš™๏ธ Processing geometry..."})}
error_message = None
geojson = None
features = []
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
yield {"event": "status", "data": json.dumps({"status": f"โœ… Result contains {len(features)} features"})}
except Exception as e:
error_message = str(e)
yield {"event": "status", "data": json.dumps({"status": "โš ๏ธ Spatial error, attempting repair..."})}
try:
sql = await self.llm.correct_sql(query, sql, error_message, full_context)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
yield {
"event": "result",
"data": json.dumps({
"response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
"sql_query": sql,
"geojson": None,
"data_citations": [],
"chart_data": None,
"raw_data": []
})
}
return
# 4. Result Processing
if features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "๐Ÿ“")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer: {e}")
# 5. Explanation
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ’ฌ Explaining results..."})}
data_summary = f"Spatial operation resulted in {len(features)} features."
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, sql, data_summary, history):
if chunk["type"] == "thought":
yield {"event": "chunk", "data": json.dumps({"type": "thought", "content": chunk["text"]})}
elif chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# 6. Final Result
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": sql,
"geojson": geojson,
"chart_data": None,
"raw_data": [], # Spatial ops usually visual
"data_citations": []
})}
return
else:
# Fallback
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": "I'm not sure how to handle this query yet."})}
async def _handle_general_chat(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""Handles general conversational queries."""
# Add schema context to help the LLM answer questions about the data
enhanced_query = f"""The user is asking about Panama geographic data.
Available data: {len(self.data_loader.admin1)} provinces, {len(self.data_loader.admin2)} districts, {len(self.data_loader.admin3)} corregimientos.
User question: {query}
Respond helpfully as GeoQuery, the territorial intelligence assistant."""
response = await self.llm.generate_response(enhanced_query, history)
return {
"response": response,
"sql_query": None,
"geojson": None,
"data_citations": [],
"intent": "GENERAL_CHAT"
}
async def _handle_data_query(self, query: str, history: List[Dict[str, str]], include_map: bool = True) -> Dict[str, Any]:
"""
Handles data queries using text-to-SQL with SOTA Smart Discovery.
"""
print(f"[GeoQuery] Starting Data Query: {query}")
# 0. Get Catalog
from backend.core.data_catalog import get_data_catalog
catalog = get_data_catalog()
# 1. Smart Discovery: Identify relevant tables
summaries = catalog.get_all_table_summaries()
# Ask LLM which tables are relevant
relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
# 2. Lazy Loading
feature_tables = []
for table in relevant_tables:
if self.geo_engine.ensure_table_loaded(table):
feature_tables.append(table)
else:
print(f"[GeoQuery] Warning: Could not load relevant table '{table}'")
# 3. Get schema context (now includes the newly loaded tables)
table_schema = self.geo_engine.get_table_schemas()
# Fallback for empty schema
if len(table_schema) < 50:
print("[GeoQuery] GeoEngine schema empty. Fetching from Catalog Metadata.")
fallback_tables = list(set(feature_tables + ["pan_admin1", "pan_admin2", "pan_admin3"]))
table_schema = catalog.get_specific_table_schemas(fallback_tables)
# 4. Generate real SQL using LLM
print(f"[GeoQuery] Generating SQL with context size: {len(table_schema)} chars")
sql = await self.llm.generate_analytical_sql(query, table_schema, history)
# Check for SQL generation errors
if sql.startswith("-- Error"):
available_data = ", ".join(feature_tables) if feature_tables else "Administrative Boundaries"
return {
"response": f"I couldn't find the specific data you asked for. I have access to: {available_data}. \n\nOriginal request: {query}",
"sql_query": sql,
"intent": "DATA_QUERY"
}
# 5. Execute SQL in DuckDB
error_message = None
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
print(f"[GeoQuery] Query returned {len(features)} features")
except Exception as e:
error_message = str(e)
print(f"[GeoQuery] SQL execution error: {error_message}")
# Self-Correction Loop
try:
sql = await self.llm.correct_sql(query, sql, error_message, str(table_schema))
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
return {
"response": f"The SQL query failed to execute even after an automatic repair attempt.\nOriginal Error: {error_message}\nRepair Error: {str(e2)}",
"sql_query": sql,
"intent": "DATA_QUERY"
}
# 6. Post-Process via ResponseFormatter
citations = ResponseFormatter.generate_citations(relevant_tables, features)
data_summary = ResponseFormatter.generate_data_summary(features)
# 7. Generate explanation
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
# 8. Add Layer Metadata to GeoJSON and REGISTER in GeoEngine
if include_map and features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "๐Ÿ“")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
try:
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(DEFAULT_SESSION_ID, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register layer in GeoEngine: {e}")
# 9. Auto-generate Chart
chart_data = ResponseFormatter.generate_chart_data(sql, features)
# 10. Prepare Raw Data
raw_data = ResponseFormatter.prepare_raw_data(features)
return {
"response": explanation,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"data_citations": citations,
"chart_data": chart_data,
"raw_data": raw_data,
"intent": "DATA_QUERY" if not include_map else "MAP_REQUEST"
}
async def _handle_spatial_op(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""Handles spatial operations (Difference, Intersection, etc) using GeoEngine."""
# 0. Get data catalog for relevant tables
from backend.core.data_catalog import get_data_catalog
catalog = get_data_catalog()
summaries = catalog.get_all_table_summaries()
# 1. Identify relevant base tables from query
relevant_tables = await self.llm.identify_relevant_tables(query, summaries)
# 2. Lazy load those tables
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
# 3. Get schema of loaded base tables
base_table_schema = self.geo_engine.get_table_schemas()
# 4. Prepare Layer Context (user-created layers from session)
session_layers = self.session_store.get_layers(DEFAULT_SESSION_ID)
layer_context = "User-Created Layers:\n"
if not session_layers:
layer_context += "(No user layers created yet.)\n"
else:
for i, layer in enumerate(session_layers):
layer_context += f"Layer {i+1}: {layer['name']} (Table: {layer['table_name']})\n"
# 5. Combine both contexts for LLM
full_context = f"{base_table_schema}\n\n{layer_context}"
# 6. Generate Spatial SQL
sql = await self.llm.generate_spatial_sql(query, full_context, history)
# 7. Execute
error_message = None
geojson = None
features = []
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
except Exception as e:
error_message = str(e)
try:
sql = await self.llm.correct_sql(query, sql, error_message, full_context)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
error_message = None
except Exception as e2:
return {
"response": f"I tried to perform the spatial operation but encountered an error: {str(e)}\n\nQuery: {sql}",
"sql_query": sql,
"intent": "SPATIAL_OP"
}
# 4. Result Processing
if features:
# Generate AI layer name
layer_info = await self.llm.generate_layer_name(query, sql)
layer_name_ai = layer_info.get("name", "Map Layer")
layer_emoji = layer_info.get("emoji", "๐Ÿ“")
point_style = layer_info.get("pointStyle", None)
geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(query, geojson, features, layer_name_ai, layer_emoji, point_style)
table_name = self.geo_engine.register_layer(layer_id, geojson)
self.session_store.add_layer(DEFAULT_SESSION_ID, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
data_summary = f"Spatial operation resulted in {len(features)} features."
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
return {
"response": explanation,
"sql_query": sql,
"geojson": geojson,
"data_citations": [],
"intent": "SPATIAL_OP"
}
async def _handle_stat_query(self, query: str, history: List[Dict[str, str]]) -> Dict[str, Any]:
"""
Handles statistical queries where charts/tables are more important than maps.
"""
# Reuse data query logic but without map emphasis
result = await self._handle_data_query(query, history, include_map=False)
result["intent"] = "STAT_QUERY"
# Ensure chart data is present if possible
if not result.get("chart_data") and result.get("raw_data"):
# Force chart attempt
features_mock = [{"properties": d} for d in result["raw_data"]]
result["chart_data"] = ResponseFormatter.generate_chart_data(result.get("sql_query", ""), features_mock)
return result
async def _execute_multi_step_query(
self,
query: str,
history: List[Dict[str, str]],
include_map: bool,
session_id: str
):
"""
Execute a complex query by breaking it into multiple steps.
Yields streaming events throughout the multi-step process.
"""
import asyncio
# 1. Get candidate tables for planning
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ“š Discovering relevant datasets..."})}
candidate_tables = self.semantic_search.search_table_names(query, top_k=20)
if not candidate_tables:
candidate_tables = list(self.catalog.catalog.keys())
# 2. Plan the query
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ“‹ Creating execution plan..."})}
plan = await self.query_planner.plan_query(query, candidate_tables, self.llm)
if not plan.is_complex or not plan.steps:
# Fallback to simple execution
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ“š Executing as simple query..."})}
# Re-route to simple path by manually calling the logic
candidate_summaries = self.catalog.get_summaries_for_tables(candidate_tables)
relevant_tables = await self.llm.identify_relevant_tables(query, candidate_summaries)
for table in relevant_tables:
self.geo_engine.ensure_table_loaded(table)
table_schema = self.geo_engine.get_table_schemas()
yield {"event": "status", "data": json.dumps({"status": "โœ๏ธ Writing SQL query..."})}
sql = await self.llm.generate_analytical_sql(query, table_schema, history)
sql = sql.replace("```sql", "").replace("```", "").strip()
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
except Exception as e:
yield {"event": "result", "data": json.dumps({
"response": f"Query execution failed: {str(e)}",
"sql_query": sql
})}
return
data_summary = ResponseFormatter.generate_data_summary(features)
explanation = await self.llm.generate_explanation(query, sql, data_summary, history)
yield {"event": "result", "data": json.dumps({
"response": explanation,
"sql_query": sql,
"geojson": geojson if include_map and features else None,
"chart_data": ResponseFormatter.generate_chart_data(sql, features),
"raw_data": ResponseFormatter.prepare_raw_data(features),
"data_citations": []
})}
return
# 3. Show plan to user
step_descriptions = [f"Step {i+1}: {s.description}" for i, s in enumerate(plan.steps)]
yield {"event": "chunk", "data": json.dumps({
"type": "thought",
"content": f"Planning multi-step execution:\n" + "\n".join(step_descriptions)
})}
# 4. Load all needed tables
all_tables = set()
for step in plan.steps:
all_tables.update(step.tables_needed)
if all_tables:
yield {"event": "status", "data": json.dumps({"status": f"๐Ÿ’พ Loading {len(all_tables)} datasets..."})}
for table in all_tables:
self.geo_engine.ensure_table_loaded(table)
# 5. Execute steps by parallel groups
intermediate_results = {}
all_features = []
all_sql = []
for group_idx, group in enumerate(plan.parallel_groups):
group_steps = [s for s in plan.steps if s.step_id in group]
yield {"event": "status", "data": json.dumps({
"status": f"โšก Executing step group {group_idx + 1}/{len(plan.parallel_groups)}..."
})}
# Execute steps in this group (could be parallel, but sequential for simplicity)
for step in group_steps:
yield {"event": "status", "data": json.dumps({
"status": f"๐Ÿ”„ {step.description}..."
})}
# Generate SQL for this step
table_schema = self.geo_engine.get_table_schemas()
# Build step-specific prompt
step_query = f"""Execute this step: {step.description}
Original user request: {query}
SQL Hint: {step.sql_template or 'None'}
Previous step results available: {list(intermediate_results.keys())}"""
sql = await self.llm.generate_analytical_sql(step_query, table_schema, history)
sql = sql.replace("```sql", "").replace("```", "").strip()
# Skip if LLM returned an error
if "DATA_UNAVAILABLE" in sql or sql.startswith("-- ERROR"):
logger.warning(f"Step {step.step_id} indicated data unavailable")
intermediate_results[step.result_name] = {"features": [], "sql": sql}
continue
try:
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
intermediate_results[step.result_name] = {
"features": features,
"sql": sql,
"geojson": geojson
}
all_features.extend(features)
all_sql.append(f"-- {step.description}\n{sql}")
yield {"event": "status", "data": json.dumps({
"status": f"โœ… Step got {len(features)} results"
})}
except Exception as e:
logger.error(f"Step {step.step_id} failed: {e}")
# Try to repair
try:
sql = await self.llm.correct_sql(step_query, sql, str(e), table_schema)
geojson = self.geo_engine.execute_spatial_query(sql)
features = geojson.get("features", [])
intermediate_results[step.result_name] = {
"features": features,
"sql": sql,
"geojson": geojson
}
all_features.extend(features)
all_sql.append(f"-- {step.description} (repaired)\n{sql}")
except Exception as e2:
logger.error(f"Step repair also failed: {e2}")
intermediate_results[step.result_name] = {"features": [], "sql": sql, "error": str(e2)}
# 6. Generate final combined result
yield {"event": "status", "data": json.dumps({"status": "๐Ÿ’ฌ Generating combined analysis..."})}
# Summarize intermediate results for explanation
result_summary = []
for name, result in intermediate_results.items():
features = result.get("features", [])
result_summary.append(f"{name}: {len(features)} records")
combined_summary = f"""Multi-step query completed with {len(plan.steps)} steps.
Results:
{chr(10).join(result_summary)}
Combination logic: {plan.final_combination_logic}"""
# Get combined explanation
explanation_buffer = ""
async for chunk in self.llm.stream_explanation(query, "\n\n".join(all_sql), combined_summary, history):
if chunk["type"] == "content":
explanation_buffer += chunk["text"]
yield {"event": "chunk", "data": json.dumps({"type": "text", "content": chunk["text"]})}
# Find the best geojson to display (use the one with most features)
best_geojson = None
best_features = []
for name, result in intermediate_results.items():
features = result.get("features", [])
if len(features) > len(best_features):
best_features = features
best_geojson = result.get("geojson")
# Generate layer if we have features
if include_map and best_features and best_geojson:
layer_info = await self.llm.generate_layer_name(query, all_sql[0] if all_sql else "")
layer_name_ai = layer_info.get("name", "Multi-Step Result")
layer_emoji = layer_info.get("emoji", "๐Ÿ“Š")
best_geojson, layer_id, layer_name = ResponseFormatter.format_geojson_layer(
query, best_geojson, best_features, layer_name_ai, layer_emoji
)
try:
table_name = self.geo_engine.register_layer(layer_id, best_geojson)
self.session_store.add_layer(session_id, {
"id": layer_id,
"name": layer_name,
"table_name": table_name,
"timestamp": datetime.datetime.now().isoformat()
})
except Exception as e:
logger.warning(f"Failed to register multi-step layer: {e}")
# Generate chart from combined results
chart_data = ResponseFormatter.generate_chart_data("\n".join(all_sql), best_features)
raw_data = ResponseFormatter.prepare_raw_data(best_features)
# Final result
yield {"event": "result", "data": json.dumps({
"response": explanation_buffer,
"sql_query": "\n\n".join(all_sql),
"geojson": best_geojson if include_map and best_features else None,
"chart_data": chart_data,
"raw_data": raw_data,
"data_citations": [],
"multi_step": True,
"steps_executed": len(plan.steps)
})}