qwen4bit / run_cloud_training.py
George-API's picture
Upload run_cloud_training.py with huggingface_hub
2281f75 verified
raw
history blame
37.8 kB
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit using unsloth
RESEARCH TRAINING PHASE ONLY - No output generation
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
OPTIMIZED FOR L40S GPU (48GB VRAM)
"""
# Set critical environment variables before any imports
import os
# Configure PyTorch memory allocator for better memory management with L40S GPU
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
os.environ["XFORMERS_DISABLED"] = "1"
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
# L40S-specific CUDA optimization
os.environ["CUDA_AUTO_BOOST"] = "1"
import json
import logging
import argparse
import numpy as np
from dotenv import load_dotenv
import torch
import sys
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM, AutoConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig
from unsloth import FastLanguageModel
# Set DeepSpeed environment variables to disable MPI
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "9994"
os.environ["RANK"] = "0"
os.environ["LOCAL_RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
# Try to import deepspeed, install mpi4py if needed
try:
import deepspeed
except ImportError as e:
if "mpi4py" in str(e):
logger.warning("mpi4py not found, installing...")
import subprocess
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "mpi4py"])
import deepspeed
logger.info("Successfully installed mpi4py and imported deepspeed")
except Exception as install_error:
logger.warning(f"Failed to install mpi4py: {install_error}")
logger.warning("Continuing without DeepSpeed MPI support")
# Set a flag to disable DeepSpeed later
os.environ["DISABLE_DEEPSPEED_MPI"] = "1"
else:
logger.error(f"Failed to import deepspeed: {e}")
raise
# Disable all attention optimizations that might cause issues
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["XFORMERS_DISABLED"] = "1"
# Completely disable xformers by removing it from sys.modules if it's loaded
if 'xformers' in sys.modules:
del sys.modules['xformers']
if 'xformers.ops' in sys.modules:
del sys.modules['xformers.ops']
# Patch Python's import system to prevent xformers from being imported
class XFormersBlocker:
def __init__(self, original_importer):
self.original_importer = original_importer
def find_spec(self, fullname, path, target=None):
if 'xformers' in fullname:
# Block xformers imports
return None
# Use the original importer for everything else
return self.original_importer.find_spec(fullname, path, target)
# Add our import blocker to sys.meta_path
sys.meta_path.insert(0, XFormersBlocker(sys.meta_path[0]))
# Configure logging first
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler("training.log")
]
)
logger = logging.getLogger(__name__)
# Make sure torch is installed and available before proceeding
try:
logger.info("Importing torch...")
import torch
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
except ImportError:
logger.error("PyTorch not found. Installing torch first...")
try:
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch"])
logger.info("PyTorch installed successfully. Importing...")
import torch
logger.info(f"PyTorch version: {torch.__version__}")
except Exception as e:
logger.error(f"Failed to install PyTorch: {e}")
logger.error("Cannot proceed without PyTorch. Exiting.")
raise
# Now try to install flash-attention (for systems that support it)
try:
import subprocess
import sys
# Make sure torch is installed before attempting flash-attn
try:
logger.info("Ensuring PyTorch is installed before flash-attention...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch", "--quiet"])
logger.info("PyTorch installation verified")
except Exception as torch_error:
logger.warning(f"PyTorch installation check failed: {torch_error}")
logger.info("Will continue with flash-attention installation anyway")
logger.info("Attempting to install flash-attention...")
# Try multiple installation approaches for flash-attention
try:
# First try with pip install
logger.info("Trying standard pip install for flash-attn")
subprocess.check_call([sys.executable, "-m", "pip", "install", "flash-attn"])
except Exception as pip_error:
logger.warning(f"Standard installation failed: {pip_error}")
logger.info("Trying alternative installation approach...")
# Try the PIP_EXTRA_INDEX_URL approach
env = os.environ.copy()
if "PIP_EXTRA_INDEX_URL" not in env:
env["PIP_EXTRA_INDEX_URL"] = "https://download.pytorch.org/whl/cu118"
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "flash-attn"],
env=env
)
logger.info("Successfully installed flash-attention")
except Exception as e:
logger.warning(f"Failed to install flash-attention: {e}")
logger.info("Continuing without flash-attention")
# Check if flash attention was successfully installed
flash_attention_available = False
try:
import flash_attn
flash_attention_available = True
logger.info(f"Flash Attention will be used (version: {flash_attn.__version__})")
# We'll handle flash attention configuration during model loading
except ImportError:
logger.info("Flash Attention not available, will use standard attention mechanism")
# Check if tensorboard is available
try:
import tensorboard
TENSORBOARD_AVAILABLE = True
except ImportError:
TENSORBOARD_AVAILABLE = False
print("Tensorboard not available. Will skip tensorboard logging.")
# Default dataset path - use the correct path with username
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
def load_config(config_path):
"""Load the transformers config from JSON file"""
logger.info(f"Loading config from {config_path}")
with open(config_path, 'r') as f:
config = json.load(f)
return config
def load_and_prepare_dataset(dataset_name, config):
"""
Load and prepare the dataset for fine-tuning.
Sort entries by prompt_number as required.
Handles both pre-tokenized and string content.
"""
# Use the default dataset path if no specific path is provided
if dataset_name == "phi4-cognitive-dataset":
dataset_name = DEFAULT_DATASET
logger.info(f"Loading dataset: {dataset_name}")
try:
# Load dataset
dataset = load_dataset(dataset_name)
# Extract the split we want to use (usually 'train')
if 'train' in dataset:
dataset = dataset['train']
# Get the dataset config
dataset_config = config.get("dataset_config", {})
sort_field = dataset_config.get("sort_by_field", "prompt_number")
# Always sort in ascending order by prompt_number
logger.info(f"Sorting dataset by {sort_field} in ascending order")
dataset = dataset.sort(sort_field)
# Verify sorting
if len(dataset) > 1:
first_prompt = dataset[0].get(sort_field, None)
last_prompt = dataset[-1].get(sort_field, None)
logger.info(f"Dataset sorted: first {sort_field}={first_prompt}, last {sort_field}={last_prompt}")
# Additional verification of a few samples
sample_indices = [0, len(dataset)//2, len(dataset)-1]
sample_prompts = [dataset[i].get(sort_field, None) for i in sample_indices]
logger.info(f"Sample prompt numbers: {sample_prompts}")
# Verify order is ascending
if not all(sample_prompts[i] <= sample_prompts[i+1] for i in range(len(sample_prompts)-1)):
logger.warning("Dataset may not be properly sorted! Please check the ordering.")
# Print dataset structure for debugging
logger.info(f"Dataset loaded with {len(dataset)} entries")
logger.info(f"Dataset columns: {dataset.column_names}")
# Print a sample entry to understand structure
if len(dataset) > 0:
sample = dataset[0]
logger.info(f"Sample entry structure: {list(sample.keys())}")
# Check if dataset is pre-tokenized or contains string content
is_pre_tokenized = False
if 'input_ids' in sample and isinstance(sample['input_ids'], list) and all(isinstance(x, int) for x in sample['input_ids']):
logger.info("Dataset appears to be pre-tokenized with input_ids field")
is_pre_tokenized = True
elif 'conversations' in sample:
logger.info(f"Sample conversations structure: {sample['conversations'][:1]}")
# Check if conversations contain pre-tokenized data
if isinstance(sample['conversations'], list) and len(sample['conversations']) > 0:
conv = sample['conversations'][0]
if isinstance(conv, dict) and 'input_ids' in conv and isinstance(conv['input_ids'], list):
logger.info("Dataset appears to be pre-tokenized in conversations.input_ids")
is_pre_tokenized = True
elif isinstance(conv, dict) and 'content' in conv:
content = conv['content']
if isinstance(content, list) and all(isinstance(x, int) for x in content):
logger.info("Dataset appears to be pre-tokenized in conversations.content")
is_pre_tokenized = True
else:
logger.info("Dataset appears to contain string content that will need tokenization")
if is_pre_tokenized:
logger.info("Using pre-tokenized dataset - tokenizer will only be used as fallback")
else:
logger.info("Dataset contains string content - tokenizer will be used")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
logger.info("Available datasets in the Hub:")
# Print a more helpful error message
print(f"Failed to load dataset: {dataset_name}")
print(f"Make sure the dataset exists and is accessible.")
print(f"If it's a private dataset, ensure your HF_TOKEN has access to it.")
raise
def tokenize_string(text, tokenizer):
"""Tokenize a string using the provided tokenizer"""
if not text:
return []
# Tokenize the text
tokens = tokenizer.encode(text, add_special_tokens=False)
return tokens
# Data collator for pre-tokenized dataset
class PreTokenizedCollator(DataCollatorMixin):
"""
Data collator that can handle both pre-tokenized datasets and string content.
Will tokenize strings if necessary, but logs warnings.
"""
def __init__(self, pad_token_id=0, tokenizer=None):
self.pad_token_id = pad_token_id
self.tokenizer = tokenizer # Keep a reference to the tokenizer for fallback tokenization
def __call__(self, features):
# Print a sample feature to understand structure
if len(features) > 0:
logger.info(f"Sample feature keys: {list(features[0].keys())}")
# Extract input_ids from conversations if needed
processed_features = []
for feature in features:
# If input_ids is directly available, use it without tokenization
if 'input_ids' in feature and isinstance(feature['input_ids'], list):
# Already tokenized, no processing needed
processed_features.append(feature)
continue
# If input_ids is not directly available, try to extract from conversations
if 'input_ids' not in feature and 'conversations' in feature:
# Extract from conversations based on your dataset structure
conversations = feature['conversations']
# Debug the conversations structure (only for first batch)
if len(processed_features) == 0:
logger.info(f"Conversations type: {type(conversations)}")
if isinstance(conversations, list) and len(conversations) > 0:
logger.info(f"First conversation type: {type(conversations[0])}")
# Try different approaches to extract input_ids
if isinstance(conversations, list) and len(conversations) > 0:
# Case 1: If conversations is a list of dicts with 'input_ids' field (pre-tokenized)
if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
feature['input_ids'] = conversations[0]['input_ids']
# Case 2: If conversations itself contains the input_ids (pre-tokenized)
elif all(isinstance(x, int) for x in conversations):
feature['input_ids'] = conversations
# Case 3: If conversations is a list of dicts with 'content' field
elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
# If content is already a list of integers, use it directly
if isinstance(content, list) and all(isinstance(x, int) for x in content):
feature['input_ids'] = content
# If content is a string, tokenize it with a warning
elif isinstance(content, str) and self.tokenizer:
logger.warning("Found string content in dataset. Tokenizing as fallback.")
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
else:
logger.warning(f"Unexpected content format: {type(content)}")
continue
# Case 4: If conversations is a list of strings
elif all(isinstance(x, str) for x in conversations) and self.tokenizer:
# Join all strings and tokenize
logger.warning("Found string conversations in dataset. Tokenizing as fallback.")
full_text = " ".join(conversations)
feature['input_ids'] = self.tokenizer.encode(full_text, add_special_tokens=False)
# Ensure input_ids is a list of integers
if 'input_ids' in feature:
# If input_ids is a string, tokenize it
if isinstance(feature['input_ids'], str) and self.tokenizer:
logger.warning("Found string input_ids in dataset. Tokenizing as fallback.")
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
# If input_ids is not a list, convert it
elif not isinstance(feature['input_ids'], list):
try:
feature['input_ids'] = list(feature['input_ids'])
except:
logger.error(f"Could not convert input_ids to list: {type(feature['input_ids'])}")
continue
else:
logger.warning("No input_ids found in this example. Skipping.")
continue
processed_features.append(feature)
# If we still don't have input_ids, log an error
if len(processed_features) == 0:
logger.error("No valid examples found in batch. Check dataset format.")
raise ValueError("No valid examples found. Please check dataset structure.")
if 'input_ids' not in processed_features[0]:
logger.error(f"Could not find input_ids in features. Available keys: {list(processed_features[0].keys())}")
if 'conversations' in processed_features[0]:
logger.error(f"Conversations structure: {processed_features[0]['conversations'][:1]}")
raise ValueError("Could not find input_ids in dataset. Please check dataset structure.")
# Determine max length in this batch
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
# Initialize batch tensors
batch = {
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
}
# Fill batch tensors
for i, feature in enumerate(processed_features):
input_ids = feature["input_ids"]
seq_len = len(input_ids)
# Convert to tensor if it's a list
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids, dtype=torch.long)
# Copy data to batch tensors
batch["input_ids"][i, :seq_len] = input_ids
batch["attention_mask"][i, :seq_len] = 1
# If there are labels, use them, otherwise use input_ids
if "labels" in feature:
labels = feature["labels"]
if isinstance(labels, list):
labels = torch.tensor(labels, dtype=torch.long)
batch["labels"][i, :len(labels)] = labels
else:
batch["labels"][i, :seq_len] = input_ids
return batch
def create_training_marker(output_dir):
"""Create a marker file to indicate training is active"""
# Create in current directory for app.py to find
with open("TRAINING_ACTIVE", "w") as f:
f.write(f"Training active in {output_dir}")
# Also create in output directory
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
f.write("This model is for research training only. No interactive outputs.")
def remove_training_marker():
"""Remove the training marker file"""
if os.path.exists("TRAINING_ACTIVE"):
os.remove("TRAINING_ACTIVE")
logger.info("Removed training active marker")
def load_model_safely(model_name, max_seq_length, dtype=None, use_flash_attention=False, use_deepspeed=False):
"""
Load the model directly with HuggingFace, bypassing Unsloth optimizations
to avoid memory-efficient attention issues
"""
logger.info(f"Loading model: {model_name}")
# Create BitsAndBytesConfig for 4-bit quantization
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
# Force eager implementation to avoid BMGHK format issues
attn_implementation = "eager"
logger.info(f"Forcing eager attention implementation to avoid BMGHK format issues")
# Skip Unsloth and use standard HuggingFace loading
logger.info("Bypassing Unsloth optimizations to avoid memory-efficient attention issues")
# Check available GPUs
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} GPU(s) available")
# Load with standard HuggingFace
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Set attention implementation in config
config.attn_implementation = attn_implementation
# Disable any custom attention mechanisms
if hasattr(config, "use_flash_attention"):
config.use_flash_attention = False
if hasattr(config, "use_memory_efficient_attention"):
config.use_memory_efficient_attention = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Set device mapping based on whether DeepSpeed is used
# When using DeepSpeed, we should use 'cpu' or 'meta' for initial loading
# to avoid OOM issues, as DeepSpeed will handle the device placement
if use_deepspeed:
logger.info("Using DeepSpeed - loading model initially on CPU to avoid OOM issues")
device_map = "cpu" # Load on CPU first, DeepSpeed will handle distribution
else:
# Always use auto device mapping for cloud hardware when not using DeepSpeed
device_map = "auto"
logger.info(f"Using device_map={device_map} for initial model loading")
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
device_map=device_map,
torch_dtype=dtype or torch.float16,
quantization_config=bnb_config,
trust_remote_code=True,
attn_implementation=attn_implementation
)
logger.info("Model loaded successfully with standard HF loading")
# If using DeepSpeed, ensure model is properly prepared
if use_deepspeed:
logger.info("Model loaded on CPU - DeepSpeed will handle device placement during training")
return model, tokenizer
def train(config_path, dataset_name, output_dir):
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
# Load environment variables
load_dotenv()
config = load_config(config_path)
# Set CUDA launch blocking for better error reporting
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Try to unload xformers if it's loaded
if 'xformers' in sys.modules:
logger.info("Removing xformers from sys.modules")
del sys.modules['xformers']
# Patch torch.nn.functional to avoid memory_efficient_attention
try:
import torch.nn.functional as F
if hasattr(F, 'scaled_dot_product_attention'):
logger.info("Patching torch.nn.functional.scaled_dot_product_attention")
original_sdpa = F.scaled_dot_product_attention
def safe_sdpa(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None):
# Force disable memory efficient attention
logger.info("Using safe scaled_dot_product_attention (no xformers)")
return original_sdpa(query, key, value, attn_mask, dropout_p, is_causal, scale)
F.scaled_dot_product_attention = safe_sdpa
except Exception as e:
logger.warning(f"Failed to patch scaled_dot_product_attention: {e}")
# Extract configs
model_config = config.get("model_config", {})
training_config = config.get("training_config", {})
hardware_config = config.get("hardware_config", {})
lora_config = config.get("lora_config", {})
dataset_config = config.get("dataset_config", {})
# Set the output directory
output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
os.makedirs(output_dir, exist_ok=True)
# Create training marker
create_training_marker(output_dir)
try:
# Print configuration summary
logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
logger.info("Configuration Summary:")
model_name = model_config.get("model_name_or_path")
logger.info(f"Model: {model_name}")
logger.info(f"Dataset: {dataset_name if dataset_name != 'phi4-cognitive-dataset' else DEFAULT_DATASET}")
logger.info(f"Output directory: {output_dir}")
logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
# Check GPU availability
gpu_count = torch.cuda.device_count()
logger.info(f"Found {gpu_count} GPU(s) available")
for i in range(gpu_count):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
# Load and prepare the dataset
dataset = load_and_prepare_dataset(dataset_name, config)
# Initialize tokenizer (just for model initialization, not for tokenizing data)
logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
# Initialize model
logger.info("Initializing model (preserving 4-bit quantization)")
# Use full sequence length of 2048 as required for pre-tokenized dataset
max_seq_length = training_config.get("max_seq_length", 2048)
logger.info(f"Using sequence length: {max_seq_length} as required for pre-tokenized dataset")
# Create LoRA config directly
logger.info("Creating LoRA configuration")
lora_config_obj = LoraConfig(
r=lora_config.get("r", 16),
lora_alpha=lora_config.get("lora_alpha", 32),
lora_dropout=lora_config.get("lora_dropout", 0.05),
bias=lora_config.get("bias", "none"),
target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
)
# Force eager attention implementation
use_flash_attention = False # Override to force eager implementation
# Initialize ds_config_path to None before checking
ds_config_path = None
# Optimize batch size for L40S GPU
gpu_info = torch.cuda.get_device_properties(0)
logger.info(f"GPU Model: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
# For L40S GPU, we can use a larger batch size and shard model across the single GPU
if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9: # Check if it's L40S (>40GB VRAM)
logger.info("Detected L40S GPU - optimizing for high-memory GPU")
per_device_train_batch_size = training_config.get("per_device_train_batch_size", 6)
logger.info(f"Using optimized batch size for L40S: {per_device_train_batch_size}")
else:
# Default to a smaller batch size for other GPUs
per_device_train_batch_size = 2
logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
# Check if DeepSpeed config is available and if MPI is disabled
deepspeed_config = config.get("deepspeed_config", None)
if deepspeed_config and os.environ.get("DISABLE_DEEPSPEED_MPI", "0") != "1":
logger.info("DeepSpeed configuration found - enabling DeepSpeed for distributed training")
# Create a temporary DeepSpeed config file
ds_config_path = os.path.join(output_dir, "ds_config_temp.json")
# Update DeepSpeed config with dynamic values
if isinstance(deepspeed_config.get("train_micro_batch_size_per_gpu"), str) and deepspeed_config.get("train_micro_batch_size_per_gpu") == "auto":
deepspeed_config["train_micro_batch_size_per_gpu"] = per_device_train_batch_size
if isinstance(deepspeed_config.get("train_batch_size"), str) and deepspeed_config.get("train_batch_size") == "auto":
deepspeed_config["train_batch_size"] = per_device_train_batch_size * gpu_count
# L40S-specific optimization: Enable ZeRO stage 2 with CPU offloading
if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9:
logger.info("Configuring DeepSpeed specifically for L40S GPU")
# Adjust ZeRO stage for L40S (48GB VRAM)
deepspeed_config["zero_optimization"]["stage"] = 2
# Enable CPU offloading for optimizer states to save GPU memory
deepspeed_config["zero_optimization"]["offload_optimizer"]["device"] = "cpu"
# Adjust communication efficiency for single high-end GPU
deepspeed_config["reduce_bucket_size"] = 1e9
deepspeed_config["allgather_bucket_size"] = 1e9
# Ensure communication backend is set to avoid MPI
if "communication_data_type" not in deepspeed_config:
deepspeed_config["communication_data_type"] = "fp16"
# Write the DeepSpeed config to a file
with open(ds_config_path, 'w') as f:
json.dump(deepspeed_config, f, indent=2)
logger.info(f"Created DeepSpeed config at {ds_config_path}")
logger.info(f"DeepSpeed ZeRO Stage: {deepspeed_config.get('zero_optimization', {}).get('stage', 'Not specified')}")
# Enable CPU offloading if configured
if deepspeed_config.get("zero_optimization", {}).get("offload_optimizer", {}).get("device") == "cpu":
logger.info("DeepSpeed CPU offloading enabled for optimizer states")
# Set using_deepspeed flag
using_deepspeed = True
elif os.environ.get("DISABLE_DEEPSPEED_MPI", "0") == "1":
logger.warning("DeepSpeed MPI support is disabled due to missing mpi4py. Continuing without DeepSpeed.")
ds_config_path = None
using_deepspeed = False
else:
logger.warning("No DeepSpeed configuration found - continuing without DeepSpeed")
ds_config_path = None
using_deepspeed = False
# Initialize model with our safe loading function
logger.info("Loading pre-quantized model with eager attention")
dtype = torch.float16 if hardware_config.get("fp16", True) else None
model, tokenizer = load_model_safely(model_name, max_seq_length, dtype, use_flash_attention, use_deepspeed=using_deepspeed)
# Disable generation capabilities for research training
logger.info("Disabling generation capabilities - Research training only")
model.config.is_decoder = False
model.config.task_specific_params = None
# Apply LoRA to model
logger.info("Applying LoRA to model")
from peft import get_peft_model
model = get_peft_model(model, lora_config_obj)
logger.info("Successfully applied LoRA with standard PEFT")
# Explicitly set attention implementation in model config again after PEFT
model.config.attn_implementation = "eager"
# No need to format the dataset - it's already pre-tokenized
logger.info("Using dataset with flexible tokenization handling")
logger.info("Will use pre-tokenized data if available, or tokenize strings as fallback")
training_dataset = dataset
# Configure reporting backends with fallbacks
reports = []
if TENSORBOARD_AVAILABLE:
reports.append("tensorboard")
logger.info("Tensorboard available and enabled for reporting")
else:
logger.warning("Tensorboard not available - metrics won't be logged to tensorboard")
if os.getenv("WANDB_API_KEY"):
reports.append("wandb")
logger.info("Wandb API key found, enabling wandb reporting")
# Default to "none" if no reporting backends are available
if not reports:
reports = ["none"]
logger.warning("No reporting backends available - training metrics won't be logged")
training_args_dict = {
"output_dir": output_dir,
"num_train_epochs": training_config.get("num_train_epochs", 3),
"per_device_train_batch_size": per_device_train_batch_size,
"gradient_accumulation_steps": training_config.get("gradient_accumulation_steps", 4),
"learning_rate": training_config.get("learning_rate", 2e-5),
"lr_scheduler_type": training_config.get("lr_scheduler_type", "cosine"),
"warmup_ratio": training_config.get("warmup_ratio", 0.03),
"weight_decay": training_config.get("weight_decay", 0.01),
"optim": training_config.get("optim", "adamw_torch"),
"logging_steps": training_config.get("logging_steps", 10),
"save_steps": training_config.get("save_steps", 200),
"save_total_limit": training_config.get("save_total_limit", 3),
"fp16": hardware_config.get("fp16", True),
"bf16": hardware_config.get("bf16", False),
"max_grad_norm": training_config.get("max_grad_norm", 0.3),
"report_to": reports,
"logging_first_step": training_config.get("logging_first_step", True),
"disable_tqdm": training_config.get("disable_tqdm", False),
"remove_unused_columns": False,
"seed": 42,
"dataloader_num_workers": 4, # Use multiple workers for data loading
}
# Add DeepSpeed config path if available and enabled
if using_deepspeed and ds_config_path:
logger.info("Adding DeepSpeed configuration to training arguments")
training_args_dict["deepspeed"] = ds_config_path
else:
logger.info("DeepSpeed is disabled - using standard distributed training")
# Create TrainingArguments with validated parameters
try:
training_args = TrainingArguments(**training_args_dict)
except Exception as e:
logger.error(f"Failed to create training arguments with DeepSpeed: {e}")
if "deepspeed" in training_args_dict:
logger.warning("Removing DeepSpeed configuration and trying again")
del training_args_dict["deepspeed"]
training_args = TrainingArguments(**training_args_dict)
using_deepspeed = False
# Create trainer with pre-tokenized collator
trainer = Trainer(
model=model,
args=training_args,
train_dataset=training_dataset,
data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id, tokenizer=tokenizer),
)
# Start training
logger.info("Starting training - RESEARCH PHASE ONLY")
trainer.train()
# Save the model
logger.info(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
# Save LoRA adapter separately for easier deployment
lora_output_dir = os.path.join(output_dir, "lora_adapter")
model.save_pretrained(lora_output_dir)
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
# Save tokenizer for completeness
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_output_dir)
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
# Copy config file for reference
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
json.dump(config, f, indent=2)
logger.info("Training complete - RESEARCH PHASE ONLY")
return output_dir
finally:
# Always remove the training marker when done
remove_training_marker()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit model (RESEARCH ONLY)")
parser.add_argument("--config", type=str, default="transformers_config.json",
help="Path to the transformers config JSON file")
parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset",
help="Dataset name or path")
parser.add_argument("--output_dir", type=str, default=None,
help="Output directory for the fine-tuned model")
parser.add_argument("--use_flash_attention", action="store_true",
help="Use Flash Attention if available (NOT RECOMMENDED)")
args = parser.parse_args()
# Override flash attention setting to force eager implementation
args.use_flash_attention = False
# Run training - Research phase only
try:
output_path = train(args.config, args.dataset, args.output_dir)
print(f"Research training completed. Model saved to: {output_path}")
except Exception as e:
logger.error(f"Training failed: {str(e)}")
remove_training_marker() # Clean up marker if training fails
raise