Chandranshu Jain commited on
Commit
33c925d
1 Parent(s): 5e306a5

Delete app3.py

Browse files
Files changed (1) hide show
  1. app3.py +0 -81
app3.py DELETED
@@ -1,81 +0,0 @@
1
- import streamlit as st
2
- from PyPDF2 import PdfReader
3
- from langchain_text_splitters import RecursiveCharacterTextSplitter
4
- import os
5
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
- from langchain_community.vectorstores import Chroma
7
- from langchain_google_genai import ChatGoogleGenerativeAI
8
- from langchain.chains.question_answering import load_qa_chain
9
- from langchain.prompts import PromptTemplate
10
- from langchain.chains import RetrievalQA
11
-
12
- st.set_page_config(page_title="Document Genie", layout="wide")
13
-
14
- st.markdown("""
15
- ## Document Genie: Get instant insights from your Documents
16
-
17
- This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
18
-
19
- ### How It Works
20
-
21
- Follow these simple steps to interact with the chatbot:
22
-
23
- 1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
24
-
25
- 2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
26
- """)
27
-
28
- GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
29
-
30
- def get_conversational_chain():
31
- prompt_template = """
32
- Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
33
- provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
34
- Context:\n {context}?\n
35
- Question: \n{question}\n
36
-
37
- Answer:
38
- """
39
- model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key)
40
- prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
41
- chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
42
- return chain
43
-
44
-
45
- def get_pdf(pdf_docs,query):
46
- text = ""
47
- for pdf in pdf_docs:
48
- pdf_reader = PdfReader(pdf)
49
- for page in pdf_reader.pages:
50
- text += page.extract_text()
51
-
52
- text_splitter = RecursiveCharacterTextSplitter(
53
- # Set a really small chunk size, just to show.
54
- chunk_size=500,
55
- chunk_overlap=20,
56
- separators=["\n\n","\n"," ",".",","])
57
- chunks=text_splitter.split_text(text)
58
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
59
- vector = Chroma.from_documents(chunk, embeddings)
60
- #docs = vector.similarity_search(query)
61
- docs = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
62
- chain = get_conversational_chain()
63
- response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
64
- return response
65
- #st.write("Reply: ", response["output_text"])
66
-
67
- def main():
68
- st.header("Chat with your pdf💁")
69
-
70
- question = st.text_input("Ask a Question from the PDF Files", key="query")
71
-
72
- pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader")
73
- if question and st.button("Submit & Process", key="process_button"):
74
- with st.spinner("Processing..."):
75
- output = get_pdf(pdf_docs,question)
76
- st.success("Done")
77
- st.write("Reply: ", output["output_text"])
78
-
79
-
80
- if __name__ == "__main__":
81
- main()