Chandranshu Jain
Update app.py
f3203dc verified
raw
history blame
4.46 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain_text_splitters import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader
from langchain_chroma import Chroma
import tempfile
from langchain_cohere import CohereEmbeddings
st.set_page_config(page_title="Document Genie", layout="wide")
st.markdown("""
## Document Genie: Get instant insights from your Documents
This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
### How It Works
Follow these simple steps to interact with the chatbot:
1. **Upload Your Documents**: The system accepts a PDF file at one time, analyzing the content to provide comprehensive insights.
2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
""")
#def get_pdf(pdf_docs):
# loader = PyPDFLoader(pdf_docs)
# docs = loader.load()
# return docs
def get_pdf(uploaded_file):
if uploaded_file :
temp_file = "./temp.pdf"
# Delete the existing temp.pdf file if it exists
if os.path.exists(temp_file):
os.remove(temp_file)
with open(temp_file, "wb") as file:
file.write(uploaded_file.getvalue())
file_name = uploaded_file.name
loader = PyPDFLoader(temp_file)
docs = loader.load()
return docs
def text_splitter(text):
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size=100000
chunk_overlap=50000,
separators=["\n\n","\n"," ",".",","])
chunks=text_splitter.split_documents(text)
return chunks
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
def get_conversational_chain():
prompt_template = """
Given the following extracted parts of a long document and a question, create a final answer.
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Make sure to understand the question and answer as per the question.
If the question involves terms like detailed or explained , give answer which involves complete detail about the question.\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=GOOGLE_API_KEY)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def embedding(chunk,query):
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings = CohereEmbeddings(model="embed-english-v3.0")
db = Chroma.from_documents(chunk,embeddings)
doc = db.similarity_search(query)
print(doc)
chain = get_conversational_chain()
response = chain({"input_documents": doc, "question": query}, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.header("Chat with your pdf💁")
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
query = st.text_input("Ask a Question from the PDF Files", key="query")
if st.button("Submit & Process", key="process_button"):
with st.spinner("Processing..."):
raw_text = get_pdf(pdf_docs)
text_chunks = text_splitter(raw_text)
if query:
embedding(text_chunks,query)
st.success("Done")
if __name__ == "__main__":
main()