|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
import os |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_chroma import Chroma |
|
import tempfile |
|
from langchain_cohere import CohereEmbeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_pdf(uploaded_file): |
|
if uploaded_file : |
|
temp_file = "./temp.pdf" |
|
|
|
if os.path.exists(temp_file): |
|
os.remove(temp_file) |
|
with open(temp_file, "wb") as file: |
|
file.write(uploaded_file.getvalue()) |
|
file_name = uploaded_file.name |
|
loader = PyPDFLoader(temp_file) |
|
docs = loader.load() |
|
return docs |
|
|
|
def text_splitter(text): |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
|
|
chunk_size=100000, |
|
chunk_overlap=50000, |
|
separators=["\n\n","\n"," ",".",","]) |
|
chunks=text_splitter.split_documents(text) |
|
return chunks |
|
|
|
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") |
|
COHERE_API_KEY = os.getenv("COHERE_API_KEY") |
|
|
|
def get_conversational_chain(): |
|
prompt_template = """ |
|
Given the following extracted parts of a long document and a question, create a final answer. |
|
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in |
|
provided context just say, "answer is not available in the context", and then ignore the context and add the answer from your knowledge like a simple llm prompt. |
|
Try to give atleast the basic information.Donot return blank answer.\n\n |
|
Make sure to understand the question and answer as per the question. |
|
If the question involves terms like detailed or explained , give answer which involves complete detail about the question.\n\n |
|
Context:\n {context}?\n |
|
Question: \n{question}\n |
|
|
|
Answer: |
|
""" |
|
|
|
model = ChatGoogleGenerativeAI(model="gemini-1.0-pro-latest", temperature=0.3, google_api_key=GOOGLE_API_KEY) |
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
return chain |
|
|
|
def embedding(chunk,query): |
|
|
|
embeddings = CohereEmbeddings(model="embed-english-v3.0") |
|
db = Chroma.from_documents(chunk,embeddings) |
|
doc = db.similarity_search(query) |
|
print(doc) |
|
chain = get_conversational_chain() |
|
response = chain({"input_documents": doc, "question": query}, return_only_outputs=True) |
|
print(response) |
|
return response["output_text"] |
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] |
|
|
|
|
|
st.header("Chat with your pdf💁") |
|
with st.sidebar: |
|
st.title("PDF FILE UPLOAD:") |
|
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader") |
|
|
|
query = st.text_input("Ask a Question from the PDF File", key="query") |
|
if st.button("Submit & Process", key="process_button"): |
|
with st.spinner("Processing..."): |
|
raw_text = get_pdf(pdf_docs) |
|
text_chunks = text_splitter(raw_text) |
|
if query: |
|
embedding(text_chunks,query) |
|
st.success("Done") |
|
if query: |
|
st.session_state.messages.append({'role': 'user', "content": query}) |
|
response = embedding(text_chunks,query) |
|
st.session_state.messages.append({'role': 'assistant', "content": response}) |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message['role']): |
|
st.write(message['content']) |