Spaces:
Running
Running
Chandranshu Jain
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain_community.document_loaders import PyPDFLoader
|
11 |
+
from langchain_chroma import Chroma
|
12 |
+
import tempfile
|
13 |
+
from langchain_cohere import CohereEmbeddings
|
14 |
+
|
15 |
+
#st.set_page_config(page_title="Document Genie", layout="wide")
|
16 |
+
|
17 |
+
#st.markdown("""
|
18 |
+
### PDFChat: Get instant insights from your PDF
|
19 |
+
|
20 |
+
#This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
|
21 |
+
|
22 |
+
#### How It Works
|
23 |
+
|
24 |
+
#Follow these simple steps to interact with the chatbot:
|
25 |
+
|
26 |
+
#1. **Upload Your Document**: The system accepts a PDF file at one time, analyzing the content to provide comprehensive insights.
|
27 |
+
|
28 |
+
#2. **Ask a Question**: After processing the document, ask any question related to the content of your uploaded document for a precise answer.
|
29 |
+
#""")
|
30 |
+
|
31 |
+
#def get_pdf(pdf_docs):
|
32 |
+
# loader = PyPDFLoader(pdf_docs)
|
33 |
+
# docs = loader.load()
|
34 |
+
# return docs
|
35 |
+
|
36 |
+
def get_pdf(uploaded_file):
|
37 |
+
if uploaded_file :
|
38 |
+
temp_file = "./temp.pdf"
|
39 |
+
# Delete the existing temp.pdf file if it exists
|
40 |
+
if os.path.exists(temp_file):
|
41 |
+
os.remove(temp_file)
|
42 |
+
with open(temp_file, "wb") as file:
|
43 |
+
file.write(uploaded_file.getvalue())
|
44 |
+
file_name = uploaded_file.name
|
45 |
+
loader = PyPDFLoader(temp_file)
|
46 |
+
docs = loader.load()
|
47 |
+
return docs
|
48 |
+
|
49 |
+
def text_splitter(text):
|
50 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
51 |
+
# Set a really small chunk size, just to show.
|
52 |
+
chunk_size=100000,
|
53 |
+
chunk_overlap=50000,
|
54 |
+
separators=["\n\n","\n"," ",".",","])
|
55 |
+
chunks=text_splitter.split_documents(text)
|
56 |
+
return chunks
|
57 |
+
|
58 |
+
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
59 |
+
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
60 |
+
|
61 |
+
def get_conversational_chain():
|
62 |
+
prompt_template = """
|
63 |
+
Given the following extracted parts of a long document and a question, create a final answer.
|
64 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
65 |
+
provided context just say, "answer is not available in the context", and then ignore the context and add the answer from your knowledge like a simple llm prompt.
|
66 |
+
Try to give atleast the basic information.Donot return blank answer.\n\n
|
67 |
+
Make sure to understand the question and answer as per the question.
|
68 |
+
The answer should be a detailed one and try to incorporate examples for better understanding.
|
69 |
+
If the question involves terms like detailed or explained , give answer which involves complete detail about the question.\n\n
|
70 |
+
Context:\n {context}?\n
|
71 |
+
Question: \n{question}\n
|
72 |
+
Answer:
|
73 |
+
"""
|
74 |
+
#model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=GOOGLE_API_KEY)
|
75 |
+
model = ChatGoogleGenerativeAI(model="gemini-1.0-pro-latest", temperature=0.3, google_api_key=GOOGLE_API_KEY)
|
76 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
77 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
78 |
+
return chain
|
79 |
+
|
80 |
+
def embedding(chunk,query):
|
81 |
+
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
82 |
+
embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
83 |
+
db = Chroma.from_documents(chunk,embeddings)
|
84 |
+
doc = db.similarity_search(query)
|
85 |
+
print(doc)
|
86 |
+
chain = get_conversational_chain()
|
87 |
+
response = chain({"input_documents": doc, "question": query}, return_only_outputs=True)
|
88 |
+
print(response)
|
89 |
+
return response["output_text"]
|
90 |
+
#st.write("Reply: ", response["output_text"])
|
91 |
+
|
92 |
+
if 'messages' not in st.session_state:
|
93 |
+
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
|
94 |
+
|
95 |
+
|
96 |
+
st.header("Chat with your pdf💁")
|
97 |
+
with st.sidebar:
|
98 |
+
st.title("PDF FILE UPLOAD:")
|
99 |
+
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
|
100 |
+
|
101 |
+
query = st.chat_input("Ask a Question from the PDF File")
|
102 |
+
if query:
|
103 |
+
raw_text = get_pdf(pdf_docs)
|
104 |
+
text_chunks = text_splitter(raw_text)
|
105 |
+
st.session_state.messages.append({'role': 'user', "content": query})
|
106 |
+
response = embedding(text_chunks,query)
|
107 |
+
st.session_state.messages.append({'role': 'assistant', "content": response})
|
108 |
+
|
109 |
+
for message in st.session_state.messages:
|
110 |
+
with st.chat_message(message['role']):
|
111 |
+
st.write(message['content'])
|