VoiceCraft_gradio / data /gigaspeech.py
jason-salt
init
b971d47
import os
import torch
import random
import copy
import logging
import shutil
class dataset(torch.utils.data.Dataset):
def __init__(self, args, split):
super().__init__()
self.args = args
self.split = split
assert self.split in ['train', 'validation', 'test']
manifest_fn = os.path.join(self.args.dataset_dir, self.args.manifest_name, self.split+".txt")
with open(manifest_fn, "r") as rf:
data = [l.strip().split("\t") for l in rf.readlines()]
lengths_list = [int(item[-1]) for item in data]
self.data = []
self.lengths_list = []
for d, l in zip(data, lengths_list):
if l >= self.args.encodec_sr*self.args.audio_min_length:
if self.args.drop_long and l > self.args.encodec_sr*self.args.audio_max_length:
continue
self.data.append(d)
self.lengths_list.append(l)
logging.info(f"number of data points for {self.split} split: {len(self.lengths_list)}")
# phoneme vocabulary
vocab_fn = os.path.join(self.args.dataset_dir,"vocab.txt")
shutil.copy(vocab_fn, os.path.join(self.args.exp_dir, "vocab.txt"))
with open(vocab_fn, "r") as f:
temp = [l.strip().split(" ") for l in f.readlines() if len(l) != 0]
self.phn2num = {item[1]:int(item[0]) for item in temp}
self.symbol_set = set(["<SIL>", "<MUSIC>", "<NOISE>", "<OTHER>"])
def __len__(self):
return len(self.lengths_list)
def _load_phn_enc(self, index):
item = self.data[index]
pf = os.path.join(self.args.dataset_dir, self.args.phn_folder_name, item[1]+".txt")
ef = os.path.join(self.args.dataset_dir, self.args.encodec_folder_name, item[1]+".txt")
try:
with open(pf, "r") as p, open(ef, "r") as e:
phns = [l.strip() for l in p.readlines()]
assert len(phns) == 1, phns
x = [self.phn2num[item] for item in phns[0].split(" ") if item not in self.symbol_set] # drop ["<SIL>", "<MUSIC>", "<NOISE>", "<OTHER>"], as they are not in training set annotation
encos = [l.strip().split() for k, l in enumerate(e.readlines()) if k < self.args.n_codebooks]
assert len(encos) == self.args.n_codebooks, ef
if self.args.special_first:
y = [[int(n)+self.args.n_special for n in l] for l in encos]
else:
y = [[int(n) for n in l] for l in encos]
except Exception as e:
logging.info(f"loading failed for {pf} and {ef}, maybe files don't exist or are corrupted")
logging.info(f"error message: {e}")
return [], [[]]
return x, y
def __getitem__(self, index):
x, y = self._load_phn_enc(index)
x_len, y_len = len(x), len(y[0])
if x_len == 0 or y_len == 0:
return {
"x": None,
"x_len": None,
"y": None,
"y_len": None,
"y_mask_interval": None, # index y_mask_interval[1] is the position of start_of_continue token
"extra_mask_start": None # this is only used in VE1
}
while y_len < self.args.encodec_sr*self.args.audio_min_length:
assert not self.args.dynamic_batching
index = random.choice(range(len(self))) # regenerate an index
x, y = self._load_phn_enc(index)
x_len, y_len = len(x), len(y[0])
if self.args.drop_long:
while x_len > self.args.text_max_length or y_len > self.args.encodec_sr*self.args.audio_max_length:
index = random.choice(range(len(self))) # regenerate an index
x, y = self._load_phn_enc(index)
x_len, y_len = len(x), len(y[0])
### padding and cropping below ###
### padding and cropping below ###
# adjust the length of encodec codes, pad to max_len or randomly crop
orig_y_len = copy.copy(y_len)
max_len = int(self.args.audio_max_length * self.args.encodec_sr)
if y_len > max_len:
audio_start = random.choice(range(0, y_len-max_len))
for i in range(len(y)):
y[i] = y[i][audio_start:(audio_start+max_len)]
y_len = max_len
else:
audio_start = 0
if not self.args.dynamic_batching:
pad = [0] * (max_len - y_len) if self.args.sep_special_token else [self.args.audio_pad_token] * (max_len - y_len)
for i in range(len(y)):
y[i] = y[i] + pad
# adjust text
# if audio is cropped, and text is longer than max, crop max based on how audio is cropped
if audio_start > 0 and len(x) > self.args.text_max_length: # if audio is longer than max and text is long than max, start text the way audio started
x = x[int(len(x)*audio_start/orig_y_len):]
if len(x) > self.args.text_max_length: # if text is still longer than max, cut the end
x = x[:self.args.text_max_length]
x_len = len(x)
if x_len > self.args.text_max_length:
text_start = random.choice(range(0, x_len - self.args.text_max_length))
x = x[text_start:text_start+self.args.text_max_length]
x_len = self.args.text_max_length
elif self.args.pad_x and x_len <= self.args.text_max_length:
pad = [0] * (self.args.text_max_length - x_len) if self.args.sep_special_token else [self.args.text_pad_token] * (self.args.text_max_length - x_len)
x = x + pad
### padding and cropping above ###
### padding and cropping above ###
return {
"x": torch.LongTensor(x),
"x_len": x_len,
"y": torch.LongTensor(y),
"y_len": y_len
}
def collate(self, batch):
out = {key:[] for key in batch[0]}
for item in batch:
if item['x'] == None: # deal with load failure
continue
for key, val in item.items():
out[key].append(val)
res = {}
if self.args.pad_x:
res["x"] = torch.stack(out["x"], dim=0)
else:
res["x"] = torch.nn.utils.rnn.pad_sequence(out["x"], batch_first=True, padding_value=self.args.text_pad_token)
res["x_lens"] = torch.LongTensor(out["x_len"])
if self.args.dynamic_batching:
if out['y'][0].ndim==2:
res['y'] = torch.nn.utils.rnn.pad_sequence([item.transpose(1,0) for item in out['y']],padding_value=self.args.audio_pad_token)
res['y'] = res['y'].permute(1,2,0) # T B K -> B K T
else:
assert out['y'][0].ndim==1, out['y'][0].shape
res['y'] = torch.nn.utils.rnn.pad_sequence(out['y'], batch_first=True, padding_value=self.args.audio_pad_token)
else:
res['y'] = torch.stack(out['y'], dim=0)
res["y_lens"] = torch.LongTensor(out["y_len"])
res["text_padding_mask"] = torch.arange(res['x'][0].shape[-1]).unsqueeze(0) >= res['x_lens'].unsqueeze(1)
res["audio_padding_mask"] = torch.arange(res['y'][0].shape[-1]).unsqueeze(0) >= res['y_lens'].unsqueeze(1)
return res