Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,60 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
3 |
import os
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from random import randint
|
3 |
+
from all_models import models
|
4 |
+
from externalmod import gr_Interface_load
|
5 |
+
import asyncio
|
6 |
import os
|
7 |
+
from threading import RLock
|
8 |
+
|
9 |
+
lock = RLock()
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
+
|
12 |
+
def load_fn(models):
|
13 |
+
global models_load
|
14 |
+
models_load = {}
|
15 |
+
|
16 |
+
for model in models:
|
17 |
+
if model not in models_load.keys():
|
18 |
+
try:
|
19 |
+
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
20 |
+
except Exception as error:
|
21 |
+
print(error)
|
22 |
+
m = gr.Interface(lambda: None, ['text'], ['image'])
|
23 |
+
models_load.update({model: m})
|
24 |
+
|
25 |
+
load_fn(models)
|
26 |
+
|
27 |
+
num_models = 6
|
28 |
+
MAX_SEED = 3999999999
|
29 |
+
default_models = models[:num_models]
|
30 |
+
inference_timeout = 600
|
31 |
+
|
32 |
+
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
33 |
+
kwargs = {"seed": seed}
|
34 |
+
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN))
|
35 |
+
await asyncio.sleep(0)
|
36 |
+
try:
|
37 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
38 |
+
except (Exception, asyncio.TimeoutError) as e:
|
39 |
+
print(e)
|
40 |
+
print(f"Task timed out: {model_str}")
|
41 |
+
if not task.done():
|
42 |
+
task.cancel()
|
43 |
+
result = None
|
44 |
+
if task.done() and result is not None:
|
45 |
+
with lock:
|
46 |
+
png_path = "image.png"
|
47 |
+
result.save(png_path)
|
48 |
+
return png_path
|
49 |
+
return None
|
50 |
|
51 |
+
# Expose Gradio API
|
52 |
+
def generate_api(model_str, prompt, seed=1):
|
53 |
+
result = asyncio.run(infer(model_str, prompt, seed))
|
54 |
+
if result:
|
55 |
+
return result # Path to generated image
|
56 |
+
return None
|
57 |
|
58 |
+
# Launch Gradio API without frontend
|
59 |
+
iface = gr.Interface(fn=generate_api, inputs=["text", "text", "number"], outputs="file")
|
60 |
+
iface.launch(show_api=True, share=True)
|