Spaces:
Sleeping
Sleeping
import copy | |
import torch | |
import math | |
import torch.nn as nn | |
from torch.nn.parameter import Parameter | |
import random | |
import numpy as np | |
from load_weights import load_weight | |
from sklearn.model_selection import train_test_split | |
from transformers import GPT2TokenizerFast | |
import pandas as pd | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import AdamW, get_linear_schedule_with_warmup | |
torch.manual_seed(42) | |
import nltk | |
nltk.download('punkt') | |
from transformers import GPT2Tokenizer | |
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler | |
import datetime | |
import time | |
import os | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
from tqdm import trange | |
import gradio as gr | |
def gelu(x): | |
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
class Conv1D(nn.Module): | |
def __init__(self, nf, nx): | |
super(Conv1D, self).__init__() | |
self.nf = nf | |
w = torch.empty(nx, nf) | |
nn.init.normal_(w, std=0.02) | |
self.weight = Parameter(w) | |
self.bias = Parameter(torch.zeros(nf)) | |
def forward(self, x): | |
size_out = x.size()[:-1] + (self.nf,) | |
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
x = x.view(*size_out) | |
return x | |
class LayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-12): | |
"""Construct a layernorm module in the TF style (epsilon inside the square root). | |
""" | |
super(LayerNorm, self).__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, x): | |
u = x.mean(-1, keepdim=True) | |
s = (x - u).pow(2).mean(-1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
return self.weight * x + self.bias | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False): | |
super(Attention, self).__init__() | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
# [switch nx => n_state from Block to Attention to keep identical to TF implem] | |
assert n_state % config.n_head == 0 | |
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.c_attn = Conv1D(n_state * 3, nx) | |
self.c_proj = Conv1D(n_state, nx) | |
def _attn(self, q, k, v): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
nd, ns = w.size(-2), w.size(-1) | |
b = self.bias[:, :, ns-nd:ns, :ns] | |
w = w * b - 1e10 * (1 - b) | |
w = nn.Softmax(dim=-1)(w) | |
return torch.matmul(w, v) | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) | |
else: | |
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
def forward(self, x, layer_past=None): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
if layer_past is not None: | |
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below | |
key = torch.cat((past_key, key), dim=-1) | |
value = torch.cat((past_value, value), dim=-2) | |
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking | |
a = self._attn(query, key, value) | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
return a, present | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) | |
super(MLP, self).__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, nx) | |
self.c_proj = Conv1D(nx, n_state) | |
self.act = gelu | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return h2 | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super(Block, self).__init__() | |
nx = config.n_embd | |
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.attn = Attention(nx, n_ctx, config, scale) | |
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(4 * nx, config) | |
def forward(self, x, layer_past=None): | |
a, present = self.attn(self.ln_1(x), layer_past=layer_past) | |
x = x + a | |
m = self.mlp(self.ln_2(x)) | |
x = x + m | |
return x, present | |
class GPT2Model(nn.Module): | |
def __init__(self, config): | |
super(GPT2Model, self).__init__() | |
self.n_layer = config.n_layer | |
self.n_embd = config.n_embd | |
self.n_vocab = config.vocab_size | |
self.wte = nn.Embedding(config.vocab_size, config.n_embd) | |
self.wpe = nn.Embedding(config.n_positions, config.n_embd) | |
block = Block(config.n_ctx, config, scale=True) | |
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) | |
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
def set_embeddings_weights(self, model_embeddings_weights): | |
embed_shape = model_embeddings_weights.shape | |
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) | |
self.decoder.weight = model_embeddings_weights # Tied weights | |
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None): | |
if (input_ids >= self.n_vocab).any(): | |
raise ValueError(f"Invalid token ID found in input_ids: {input_ids}") | |
# print(f"input_ids: {input_ids}") # Debugging statement | |
# print(f"Max input_id: {input_ids.max().item()}") # Debugging statement | |
# print(f"Min input_id: {input_ids.min().item()}") # Debugging statement | |
if past is None: | |
past_length = 0 | |
past = [None] * len(self.h) | |
else: | |
past_length = past[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, | |
device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
# print(f"inputs_embeds shape: {inputs_embeds.shape}") | |
# print(f"position_embeds shape: {position_embeds.shape}") | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.wte(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
presents = [] | |
for block, layer_past in zip(self.h, past): | |
hidden_states, present = block(hidden_states, layer_past) | |
presents.append(present) | |
hidden_states = self.ln_f(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
return hidden_states.view(*output_shape), presents | |
class GPT2LMHead(nn.Module): | |
def __init__(self, model_embeddings_weights, config): | |
super(GPT2LMHead, self).__init__() | |
self.n_embd = config.n_embd | |
self.set_embeddings_weights(model_embeddings_weights) | |
def set_embeddings_weights(self, model_embeddings_weights): | |
embed_shape = model_embeddings_weights.shape | |
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) | |
self.decoder.weight = model_embeddings_weights # Tied weights | |
def forward(self, hidden_state): | |
# Truncated Language modeling logits (we remove the last token) | |
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) | |
lm_logits = self.decoder(hidden_state) | |
return lm_logits | |
import torch.nn.functional as F | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (batch size, vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
filter_value: value to replace filtered logits. | |
""" | |
assert logits.dim() == 2 # batch size x vocabulary size | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
class GPT2LMHeadModel(nn.Module): | |
def __init__(self, config): | |
super(GPT2LMHeadModel, self).__init__() | |
self.transformer = GPT2Model(config) | |
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config) | |
def set_tied(self): | |
""" Make sure we are sharing the embeddings | |
""" | |
self.lm_head.set_embeddings_weights(self.transformer.wte.weight) | |
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None): | |
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past) | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,presents) | |
if lm_labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = lm_labels[..., 1:].contiguous() | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs | |
import torch.nn.functional as F | |
def generate( | |
self, input_ids, max_length, temperature=1.0, top_k=0, top_p=0.9, repetition_penalty=1.0, device='cuda' | |
): | |
self.eval() | |
input_ids = input_ids.to(device) | |
batch_size = input_ids.shape[0] | |
past = None | |
generated = input_ids | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs = self(input_ids, past=past) | |
next_token_logits = outputs[0][:, -1, :] | |
past = outputs[1] | |
for i in range(batch_size): | |
for token_id in set(generated[i].tolist()): | |
next_token_logits[i, token_id] /= repetition_penalty | |
next_token_logits = next_token_logits / temperature | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
generated = torch.cat((generated, next_token), dim=1) | |
if (next_token == self.config.eos_token_id).all(): | |
break | |
input_ids = next_token | |
return generated | |
class GPT2Config(object): | |
def __init__( | |
self, | |
vocab_size_or_config_json_file=50257, | |
n_positions=1024, | |
n_ctx=1024, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
): | |
self.vocab_size = vocab_size_or_config_json_file | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
config = GPT2Config() | |
model = GPT2LMHeadModel(config) | |
state_dict = torch.load(r'epoch_4.pth', map_location='cpu' if not torch.cuda.is_available() else None) | |
model = load_weight(model, state_dict) | |
model.to(device) | |
print(model) | |
model.eval() | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
tokenizer.pad_token = tokenizer.eos_token | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (batch size x vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
""" | |
assert logits.dim() == 2, "Expected logits dimension to be 2 (batch size x vocabulary size)" | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(nn.Softmax(dim=-1)(sorted_logits), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
# Ensure that the dimensions match | |
if sorted_indices_to_remove.size() != sorted_indices.size(): | |
raise ValueError(f"Size mismatch: {sorted_indices_to_remove.size()} vs {sorted_indices.size()}") | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
# Expand dimensions to match logits tensor and use scatter_ | |
for batch_idx in range(logits.size(0)): | |
logits[batch_idx, indices_to_remove[batch_idx]] = filter_value | |
return logits | |
# prompt_text = "What is a nucleophile in organic chemistry?" | |
# prompt = f"\n<|startoftext|>[WP] {prompt_text} \n[RESPONSE]" | |
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) | |
max_length = 100 | |
temperature = 0.7 | |
top_k = 1 | |
top_p = 0.95 | |
repetition_penalty = 1.0 | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs = model(input_ids) | |
logits = outputs[0] | |
next_token_logits = logits[:, -1, :] / temperature | |
# Apply repetition penalty | |
for i in range(input_ids.size(0)): | |
for token_id in set(input_ids[i].tolist()): | |
next_token_logits[0, token_id] /= repetition_penalty | |
# Filter logits using top-k and/or top-p filtering | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
input_ids = torch.cat([input_ids, next_token], dim=-1).to(device) | |
# import re | |
# # generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
# # wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:] | |
# print(input_ids[0]) | |
# generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
# wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:] | |
# print(wp_responses) | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="Custom GPT-2 Model", | |
description="Enter a prompt to get a generated response from the custom-trained GPT-2 model.", | |
examples=[ | |
["What is a nucleophile in organic chemistry?"], | |
["Explain the concept of quantum entanglement."], | |
["How does photosynthesis work?"] | |
] | |
) | |
# Launch the Gradio interface | |
iface.launch(share=True, debug=True) | |