Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,56 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def predict(im):
|
4 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torchvision import datasets
|
6 |
+
from torchvision.transforms import ToTensor
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
device = (
|
10 |
+
"cuda"
|
11 |
+
if torch.cuda.is_available()
|
12 |
+
else "mps"
|
13 |
+
if torch.backends.mps.is_available()
|
14 |
+
else "cpu"
|
15 |
+
)
|
16 |
+
|
17 |
+
class CNN(nn.Module):
|
18 |
+
def __init__(self):
|
19 |
+
super(CNN, self).__init__()
|
20 |
+
# Definimos las capas convolucionales
|
21 |
+
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)
|
22 |
+
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)
|
23 |
+
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)
|
24 |
+
|
25 |
+
# Definimos capas fully connected
|
26 |
+
self.fc1 = nn.Linear(128 * 3 * 3, 256)
|
27 |
+
self.fc2 = nn.Linear(256, 10)
|
28 |
+
|
29 |
+
# Definimos un max pooling y dropout
|
30 |
+
self.pool = nn.MaxPool2d(2, 2)
|
31 |
+
self.dropout = nn.Dropout(0.25)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
# Pasamos las entradas por las capas convolucionales y el max pooling
|
35 |
+
x = self.pool(F.relu(self.conv1(x)))
|
36 |
+
x = self.pool(F.relu(self.conv2(x)))
|
37 |
+
x = self.pool(F.relu(self.conv3(x)))
|
38 |
+
|
39 |
+
# Aplanamos la salida de las capas convolucionales para pasar a fully connected
|
40 |
+
x = x.view(-1, 128 * 3 * 3)
|
41 |
+
|
42 |
+
# Pasamos por las capas fully connected
|
43 |
+
x = F.relu(self.fc1(x))
|
44 |
+
x = self.dropout(x)
|
45 |
+
x = self.fc2(x)
|
46 |
+
|
47 |
+
return x
|
48 |
+
|
49 |
+
model = CNN().to(device)
|
50 |
+
|
51 |
+
# Cargar el modelo en la CPU
|
52 |
+
model = CNN().to(device)
|
53 |
+
model.load_state_dict(torch.load("model_mnist_cnn.pth", map_location=torch.device('cpu')))
|
54 |
|
55 |
def predict(im):
|
56 |
|