Spaces:
Runtime error
Runtime error
import re | |
from functools import partial | |
import torch | |
from modules import shared | |
from modules.callbacks import Iteratorize | |
from modules.logging_colors import logger | |
if torch.cuda.is_available() and not torch.version.hip: | |
try: | |
from llama_cpp_cuda import Llama, LlamaCache, LogitsProcessorList | |
except: | |
from llama_cpp import Llama, LlamaCache, LogitsProcessorList | |
else: | |
from llama_cpp import Llama, LlamaCache, LogitsProcessorList | |
def ban_eos_logits_processor(eos_token, input_ids, logits): | |
logits[eos_token] = -float('inf') | |
return logits | |
class LlamaCppModel: | |
def __init__(self): | |
self.initialized = False | |
def __del__(self): | |
self.model.__del__() | |
def from_pretrained(self, path): | |
result = self() | |
cache_capacity = 0 | |
if shared.args.cache_capacity is not None: | |
if 'GiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000 | |
elif 'MiB' in shared.args.cache_capacity: | |
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 | |
else: | |
cache_capacity = int(shared.args.cache_capacity) | |
logger.info("Cache capacity is " + str(cache_capacity) + " bytes") | |
params = { | |
'model_path': str(path), | |
'n_ctx': shared.args.n_ctx, | |
'seed': int(shared.args.llama_cpp_seed), | |
'n_threads': shared.args.threads or None, | |
'n_batch': shared.args.n_batch, | |
'use_mmap': not shared.args.no_mmap, | |
'use_mlock': shared.args.mlock, | |
'low_vram': shared.args.low_vram, | |
'n_gpu_layers': shared.args.n_gpu_layers, | |
'rope_freq_base': 10000 * shared.args.alpha_value ** (64/63.), | |
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, | |
'n_gqa': shared.args.n_gqa or None, | |
'rms_norm_eps': shared.args.rms_norm_eps or None, | |
} | |
result.model = Llama(**params) | |
if cache_capacity > 0: | |
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity)) | |
# This is ugly, but the model and the tokenizer are the same object in this library. | |
return result, result | |
def encode(self, string): | |
if type(string) is str: | |
string = string.encode() | |
return self.model.tokenize(string) | |
def decode(self, tokens): | |
return self.model.detokenize(tokens) | |
def generate(self, prompt, state, callback=None): | |
prompt = prompt if type(prompt) is str else prompt.decode() | |
completion_chunks = self.model.create_completion( | |
prompt=prompt, | |
max_tokens=state['max_new_tokens'], | |
temperature=state['temperature'], | |
top_p=state['top_p'], | |
top_k=state['top_k'], | |
repeat_penalty=state['repetition_penalty'], | |
tfs_z=state['tfs'], | |
mirostat_mode=int(state['mirostat_mode']), | |
mirostat_tau=state['mirostat_tau'], | |
mirostat_eta=state['mirostat_eta'], | |
stream=True, | |
logits_processor=LogitsProcessorList([ | |
partial(ban_eos_logits_processor, self.model.token_eos()), | |
]) if state['ban_eos_token'] else None, | |
) | |
output = "" | |
for completion_chunk in completion_chunks: | |
text = completion_chunk['choices'][0]['text'] | |
output += text | |
if callback: | |
callback(text) | |
return output | |
def generate_with_streaming(self, *args, **kwargs): | |
with Iteratorize(self.generate, args, kwargs, callback=None) as generator: | |
reply = '' | |
for token in generator: | |
reply += token | |
yield reply | |