GauravSingh72388's picture
Update app.py
f4e986e verified
raw
history blame
29.8 kB
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report
import multiprocessing
from sklearn.linear_model import Ridge, Lasso, LogisticRegression
from sklearn.metrics import mean_squared_error
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import xgboost as xgb
import json
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from striprtf.striprtf import rtf_to_text
from IPython.display import display
import warnings
from sklearn.exceptions import ConvergenceWarning
import streamlit as st
import os
from striprtf.striprtf import rtf_to_text
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder
warnings.filterwarnings("ignore", category=ConvergenceWarning)
# Function to parse RTF file and call hackathon_problem function
def rtf_parser(file_path):
# Read the RTF file
with open(file_path, 'r') as file:
rtf_content = file.read()
# Convert the RTF content to text
text_content = rtf_to_text(rtf_content)
# Call the hackathon_problem function with the text content
hackathon_problem(text_content)
def hackathon_problem(text_content):
# Read JSON file
json_data = json.loads(text_content)
# Check if dataset file exists
dataset_file = json_data["design_state_data"]["session_info"]["dataset"]
if not os.path.exists(dataset_file):
st.error(f"Dataset file '{dataset_file}' not found.")
return
# Load Data
data = pd.read_csv(json_data["design_state_data"]["session_info"]["dataset"])
# Encode categorical columns
label_encoders = {}
for column in data.columns:
if data[column].dtype == 'object':
label_encoders[column] = LabelEncoder()
data[column] = label_encoders[column].fit_transform(data[column])
# Define preprocessing steps based on JSON data
preprocessing_steps = []
for feature, details in json_data["design_state_data"]["feature_handling"].items():
if "missing_values" in details and details["missing_values"] == "Impute":
if details["impute_with"] == "Average of values":
strategy = 'mean'
else:
strategy = 'median'
preprocessing_steps.append((feature + '_imputer', SimpleImputer(strategy=strategy)))
# Apply preprocessing steps
for step in preprocessing_steps:
feature_name, transformer = step
data[feature_name] = transformer.fit_transform(data[[feature_name]])
# Separate X and y
selected_features = [feature for feature, details in json_data["design_state_data"]["feature_handling"].items() if details["is_selected"]]
X = data[selected_features]
Y = data[json_data["design_state_data"]["target"]["target"]]
# Split Data
train_ratio = json_data["design_state_data"]["train"]["train_ratio"]
random_seed = json_data["design_state_data"]["train"]["random_seed"]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=1 - train_ratio, random_state=random_seed)
# Get the number of available CPU cores for parallelism
num_cores = multiprocessing.cpu_count()
selected_algorithm = None
for algorithm, details in json_data["design_state_data"]["algorithms"].items():
if details["is_selected"]:
selected_algorithm = algorithm
break
if selected_algorithm == "RandomForestClassifier":
model = RandomForestClassifier()
parameters = {
"n_estimators": np.linspace(details["min_trees"], details["max_trees"], num=3, dtype=int),
"max_depth": np.linspace(details["min_depth"], details["max_depth"], num=3, dtype=int),
"min_samples_leaf": np.linspace(details["min_samples_per_leaf_min_value"], details["min_samples_per_leaf_max_value"], num=3, dtype=int)
}
# Modify GridSearchCV instantiation to use parallel processing
grid_search = GridSearchCV(model, parameters, cv=5, n_jobs=num_cores)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Evaluate Models
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('RandomForestClassifier.png')
st.image('RandomForestClassifier.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm == "RandomForestRegressor":
# Your RandomForestRegressor code
model = RandomForestRegressor()
parameters = {
"n_estimators": list(range(details["min_trees"], details["max_trees"] + 1)),
"max_depth": list(range(details["min_depth"], details["max_depth"] + 1)),
"min_samples_leaf": list(range(details["min_samples_per_leaf_min_value"], details["min_samples_per_leaf_max_value"] + 1))}
# Modify GridSearchCV instantiation to use parallel processing
grid_search = GridSearchCV(model, parameters, cv=5, n_jobs=num_cores)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Predict on test data
Y_pred = best_model.predict(X_test)
# Calculate R-squared
r_squared = best_model.score(X_test, Y_test)
# Calculate adjusted R-squared
n = len(Y_test)
k = X_test.shape[1] # Number of predictors
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - k - 1)
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
# Create DataFrame for metrics
metrics_df = pd.DataFrame({
'Metric': ['R-squared', 'Adjusted R-squared', 'Root Mean Squared Error (RMSE)'],
'Value': [r_squared, adjusted_r_squared, rmse]
})
# Style DataFrame
styled_metrics_df = (
metrics_df.style
.set_properties(**{'text-align': 'left'}) # Align text to the left
.highlight_max(color='lightgreen') # Highlight maximum value
.set_caption('Model Evaluation Metrics') # Add caption
)
# Display styled DataFrame
st.write("metrics_df:")
st.write(styled_metrics_df)
if selected_algorithm == "LinearRegression":
# Your LinearRegression code
best_model = LinearRegression()
best_model.fit(X_train, Y_train)
# Predict on test data
Y_pred = best_model.predict(X_test)
# Calculate R-squared
r_squared = best_model.score(X_test, Y_test)
# Calculate adjusted R-squared
n = len(Y_test)
k = X_test.shape[1] # Number of predictors
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - k - 1)
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
# Create DataFrame for metrics
metrics_df = pd.DataFrame({
'Metric': ['R-squared', 'Adjusted R-squared', 'Root Mean Squared Error (RMSE)'],
'Value': [r_squared, adjusted_r_squared, rmse]
})
# Style DataFrame
styled_metrics_df = (
metrics_df.style
.set_properties(**{'text-align': 'left'}) # Align text to the left
.highlight_max(color='lightgreen') # Highlight maximum value
.set_caption('Model Evaluation Metrics') # Add caption
)
# Display styled DataFrame
st.write("metrics_df:")
st.write(styled_metrics_df)
if selected_algorithm == "LogisticRegression":
model = LogisticRegression()
parameters = {
"C": np.linspace(details["min_regparam"], details["max_regparam"], num=5),
"max_iter": np.linspace(details["min_iter"], details["max_iter"], num=5, dtype=int),
"l1_ratio": np.linspace(details["min_elasticnet"], details["max_elasticnet"], num=5)
}
# Modify GridSearchCV instantiation to use parallel processing
grid_search = GridSearchCV(model, parameters, cv=5, n_jobs=num_cores)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Evaluate Models
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('LogisticRegression.png')
st.image('LogisticRegression.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm in ["RidgeRegression", "LassoRegression"]:
if selected_algorithm == "RidgeRegression":
model = Ridge()
elif selected_algorithm == "LassoRegression":
model = Lasso()
parameters = {
"alpha": [i/10 for i in range(int(details["min_regparam"]*10), int(details["max_regparam"]*10)+1)],
"max_iter": list(range(details["min_iter"], details["max_iter"] + 1))}
# Modify GridSearchCV instantiation to use parallel processing
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Evaluate Models
Y_pred = best_model.predict(X_test)
# Calculate R-squared
r_squared = best_model.score(X_test, Y_test)
# Calculate adjusted R-squared
n = len(Y_test)
k = X_test.shape[1] # Number of predictors
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - k - 1)
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
# Create DataFrame for metrics
metrics_df = pd.DataFrame({
'Metric': ['R-squared', 'Adjusted R-squared', 'Root Mean Squared Error (RMSE)'],
'Value': [r_squared, adjusted_r_squared, rmse]
})
# Style DataFrame
styled_metrics_df = (
metrics_df.style
.set_properties(**{'text-align': 'left'}) # Align text to the left
.highlight_max(color='lightgreen') # Highlight maximum value
.set_caption('Model Evaluation Metrics') # Add caption
)
# Display styled DataFrame
st.write("metrics_df:")
st.write(styled_metrics_df)
if selected_algorithm == "ElasticNetRegression":
model = ElasticNet()
# Hyperparameters
parameters = {
"alpha": [i/10 for i in range(int(details["min_regparam"]*10), int(details["max_regparam"]*10)+1)],
"l1_ratio": [i/10 for i in range(int(details["min_elasticnet"]*10), int(details["max_elasticnet"]*10)+1)],
"max_iter": list(range(details["min_iter"], details["max_iter"] + 1))}
# Modify GridSearchCV instantiation to use parallel processing
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Evaluate Models
Y_pred = best_model.predict(X_test)
# Calculate R-squared
r_squared = best_model.score(X_test, Y_test)
# Calculate adjusted R-squared
n = len(Y_test)
k = X_test.shape[1] # Number of predictors
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - k - 1)
# Calculate RMSE
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
# Create DataFrame for metrics
metrics_df = pd.DataFrame({
'Metric': ['R-squared', 'Adjusted R-squared', 'Root Mean Squared Error (RMSE)'],
'Value': [r_squared, adjusted_r_squared, rmse]
})
# Style DataFrame
styled_metrics_df = (
metrics_df.style
.set_properties(**{'text-align': 'left'}) # Align text to the left
.highlight_max(color='lightgreen') # Highlight maximum value
.set_caption('Model Evaluation Metrics') # Add caption
)
# Display styled DataFrame
st.write("metrics_df:")
st.write(styled_metrics_df)
if selected_algorithm == "xg_boost":
# XGBoost specific handling
model = xgb.XGBClassifier(objective='multi:softmax',
booster='dart' if details['dart'] else 'gbtree',
tree_method = details['tree_method'] if details['tree_method'] != "" else "auto",
random_state=details['random_state'],)
parameters = {
'n_estimators': [details["max_num_of_trees"]] if details["max_num_of_trees"] > 0 else [5],
'max_depth': details['max_depth_of_tree'],
'learning_rate': [value * 0.001 for value in details['learningRate']],
'reg_alpha': [value * 0.01 for value in details['l1_regularization']],
'reg_lambda': [value * 0.01 for value in details['l2_regularization']],
'gamma': [value * 0.01 for value in details['gamma']],
'min_child_weight': [value * 0.01 for value in details['min_child_weight']],
'subsample': [value * 0.01 for value in details['sub_sample']],
'colsample_bytree': [value * 0.01 for value in details['col_sample_by_tree']]
}
# Perform grid search with cross-validation
grid_search = GridSearchCV(model, parameters, cv=5 , n_jobs=num_cores)
# Fit the model with early stopping on the validation set
grid_search.fit(X_train, Y_train, eval_set=[(X_test, Y_test)], early_stopping_rounds=details['early_stopping_rounds'] if details['early_stopping'] else None)
# Get the best model from grid search
best_model = grid_search.best_estimator_
# Make predictions on the test set
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('Xg_boost.png')
st.image('Xg_boost.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm == "DecisionTreeClassifier":
# Decision Tree Classifier specific handling
criterion = 'gini' if details['use_gini'] else 'entropy'
# Fix the following line to use 'use_entropy' instead of 'use_best'
splitter = 'best' if details['use_best'] and not details['use_random'] else 'random'
model = DecisionTreeClassifier(criterion=criterion, splitter=splitter)
parameters = {
'max_depth': list(range(details['min_depth'], details['max_depth'] + 1)),
'min_samples_leaf': details['min_samples_per_leaf']}
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('dt_class_cm.png')
st.image('dt_class_cm.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm == "DecisionTreeRegressor":
# Decision Tree Regressor specific handling
splitter = 'best' if details.get('use_best', False) and not details.get('use_random', False) else 'random'
random_state = details.get('random_state', 10) # Use the provided random state or default to 10
model = DecisionTreeRegressor( splitter=splitter, random_state=random_state)
parameters = {
'max_depth': list(range(details['min_depth'], details['max_depth'] + 1)),
'min_samples_leaf': details['min_samples_per_leaf']
}
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Predict on test data
Y_pred = best_model.predict(X_test)
# Calculate R-squared
r_squared = best_model.score(X_test, Y_test)
# Calculate adjusted R-squared
n = len(Y_test)
k = X_test.shape[1] # Number of predictors
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - k - 1)
rmse = np.sqrt(mean_squared_error(Y_test, Y_pred))
# Create DataFrame for metrics
metrics_df = pd.DataFrame({
'Metric': ['R-squared', 'Adjusted R-squared', 'Root Mean Squared Error (RMSE)'],
'Value': [r_squared, adjusted_r_squared, rmse]
})
# Style DataFrame
styled_metrics_df = (
metrics_df.style
.set_properties(**{'text-align': 'left'}) # Align text to the left
.highlight_max(color='lightgreen') # Highlight maximum value
.set_caption('Model Evaluation Metrics') # Add caption
)
# Display styled DataFrame
st.write("metrics_df:")
st.write(styled_metrics_df)
if selected_algorithm == "SVM":
# SVM specific handling
kernels = []
if details['linear_kernel']:
kernels.append('linear')
if details['rep_kernel']:
kernels.append('rbf')
if details['polynomial_kernel']:
kernels.append('poly')
if details['sigmoid_kernel']:
kernels.append('sigmoid')
model = SVC()
parameters = {
'C': details['c_value'],
'kernel': kernels,
'gamma': ['auto', 'scale'] if details['scale'] else details['custom_gamma_values'],
'tol': [10 ** -details['tolerance']],
'max_iter': [details['max_iterations']]
}
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
# Predict on test data
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('SVM.png')
st.image('SVM.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm == "KNN":
model = KNeighborsClassifier()
parameters = {
'n_neighbors': details['k_value'],
'weights': ['uniform', 'distance'] if details['distance_weighting'] else ['uniform'],
'algorithm': ['auto'] if details['neighbour_finding_algorithm'] == "Automatic" else [details['neighbour_finding_algorithm']],
'p': [details['p_value']] if details['p_value'] > 0 else [1]
}
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('KNN.png')
st.image('KNN.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
if selected_algorithm == "neural_network":
# Neural Network specific handling
# Initialize the MLPClassifier model with early stopping parameter
model = MLPClassifier(early_stopping=details['early_stopping'])
# Define the parameters for grid search
parameters = {
'hidden_layer_sizes': details['hidden_layer_sizes'],
'activation': ['identity', 'logistic', 'tanh', 'relu'],
'alpha': [details['alpha_value']] if details['alpha_value'] > 0 else [.1],
'max_iter': [details['max_iterations']] if details['max_iterations'] > 0 else [100],
'tol': [10 ** -details['convergence_tolerance']] if details['convergence_tolerance'] > 0 else [0.1],
'solver': [details['solver'].lower()],
'learning_rate_init': [details['initial_learning_rate']] if details['initial_learning_rate'] > 0 else [0.01],
'shuffle': [details['shuffle_data']],
'batch_size': ['auto'] if details['automatic_batching'] else [details['batch_size']],
'beta_1': [details['beta_1']] if details['beta_1'] != 0 else [.1],
'beta_2': [details['beta_2']] if details['beta_2'] != 0 else [.1],
'epsilon': [details['epsilon']] if details['epsilon'] != 0 else [.1],
'power_t': [details['power_t']] if details['power_t'] != 0 else [.1],
'momentum': [details['momentum']] if details['momentum'] != 0 else [.1],
'nesterovs_momentum': [details['use_nesterov_momentum']]
}
grid_search = GridSearchCV(model, parameters, cv=5)
grid_search.fit(X_train, Y_train)
best_model = grid_search.best_estimator_
Y_pred = best_model.predict(X_test)
confusion_mat = confusion_matrix(Y_test, Y_pred)
# Create heatmap with seaborn
sns.heatmap(confusion_mat, annot=True, cmap="viridis", fmt="d", cbar=False,
linewidths=0.5, linecolor='gray', square=True,
xticklabels=True, yticklabels=True, annot_kws={"size": 10})
# Customize axis labels
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
# Show plot
plt.savefig('neural_network.png')
st.image('neural_network.png')
# plt.show()
# Assign value to classification_rep_df
classification_rep_dict = classification_report(Y_test, Y_pred, output_dict=True)
classification_rep_df = pd.DataFrame(classification_rep_dict)
# Add some styling to the DataFrame
classification_rep_styled = classification_rep_df.style.background_gradient(cmap='viridis')
# Inside each block where you print the classification report, replace the print statement with the following:
# Print the styled classification report
st.write("Classification Report:")
st.write(classification_rep_styled)
def save_uploaded_file(uploaded_file):
file_path = os.path.join(uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
return file_path
# Define the main function
def main():
st.set_page_config(page_title="AutoML with Streamlit", layout="wide") # Set page title and layout
# Set background color of sidebar to primary color
st.markdown("""
<style>
.sidebar .sidebar-content {
background-color: #3498db; /* Primary color */
}
</style>
""", unsafe_allow_html=True)
# Set background color of main web area to light gray
st.markdown("""
<style>
.block-container {
background-color: #f9f9f9; /* Background color */
}
</style>
""", unsafe_allow_html=True)
# Add a title section with accent color text
st.title("AutoML with Json")
st.write("This application allows you to upload an RTF file and perform AutoML tasks.")
# Add a file uploader section
st.sidebar.title("Upload RTF File")
uploaded_file = st.sidebar.file_uploader("", type=["rtf"], help="Please upload your RTF file here")
if uploaded_file is not None:
file_path = save_uploaded_file(uploaded_file)
rtf_parser(file_path)
# Entry point of the script
if __name__ == "__main__":
main()