GastinoKuros's picture
Update app.py
02fdb73 verified
raw
history blame
2.02 kB
import json
import numpy as np
import gradio as gr
import pickle
from sklearn.linear_model import LinearRegression
# Load the model
with open('HYD_Rent_Predictor.pkl', 'rb') as model_file:
best_model = pickle.load(model_file)
if isinstance(best_model, LinearRegression):
best_model.check_input = False
# Load the columns
with open('columns.json', 'r') as f:
data_columns = json.load(f)['data_columns']
def predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor):
loc_index = np.where(np.array(data_columns) == locality.lower())[0][0]
x = np.zeros(len(data_columns))
x[0] = balconies
x[1] = bathroom
x[2] = furnishingDesc
x[3] = parking
x[4] = property_size
x[5] = type_bhk
x[6] = floor
if loc_index >= 0:
x[loc_index] = 1
return best_model.predict([x])[0]
# Gradio interface
def interface(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor):
result = predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor)
return f"Predicted Rent: {result:.2f} INR"
furnishing_options = [0.5, 0, 1] # Replace with actual options
parking_options = [0, 1, 2, 3] # Replace with actual options
type_bhk_options = [0.5, 1, 2, 3, 4, 5] # Replace with actual options
inputs = [
gr.Textbox(label="Locality"),
gr.inputs.Slider(0, 10, step=1, default=1, label="Balconies"),
gr.inputs.Slider(1, 5, step=1, default=1, label="Bathrooms"),
gr.inputs.Dropdown(furnishing_options, label="Furnishing Description"),
gr.inputs.Dropdown(parking_options, label="Parking"),
gr.inputs.Number(default=1000, label="Property Size (in sqft)"),
gr.inputs.Dropdown(type_bhk_options, label="Type BHK"),
gr.inputs.Number(default=1, label="Floor"),
]
outputs = gr.outputs.Textbox()
# Create Gradio interface
gr.Interface(fn=interface, inputs=inputs, outputs=outputs, title="Hyderabad House Rent Prediction").launch()