Spaces:
Sleeping
Sleeping
import json | |
import numpy as np | |
import gradio as gr | |
import pickle | |
from sklearn.linear_model import LinearRegression | |
# Load the model | |
with open('HYD_Rent_Predictor.pkl', 'rb') as model_file: | |
best_model = pickle.load(model_file) | |
if isinstance(best_model, LinearRegression): | |
best_model.check_input = False | |
# Load the columns | |
with open('columns.json', 'r') as f: | |
data_columns = json.load(f)['data_columns'] | |
def predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor): | |
loc_index = np.where(np.array(data_columns) == locality.lower())[0][0] | |
x = np.zeros(len(data_columns)) | |
x[0] = balconies | |
x[1] = bathroom | |
x[2] = furnishingDesc | |
x[3] = parking | |
x[4] = property_size | |
x[5] = type_bhk | |
x[6] = floor | |
if loc_index >= 0: | |
x[loc_index] = 1 | |
return best_model.predict([x])[0] | |
# Gradio interface | |
def interface(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor): | |
result = predict_price(locality, balconies, bathroom, furnishingDesc, parking, property_size, type_bhk, floor) | |
return f"Predicted Rent: {result:.2f} INR" | |
furnishing_options = [0.5, 0, 1] # Replace with actual options | |
parking_options = [0, 1, 2, 3] # Replace with actual options | |
type_bhk_options = [0.5, 1, 2, 3, 4, 5] # Replace with actual options | |
inputs = [ | |
gr.Textbox(label="Locality"), | |
gr.inputs.Slider(0, 10, step=1, default=1, label="Balconies"), | |
gr.inputs.Slider(1, 5, step=1, default=1, label="Bathrooms"), | |
gr.inputs.Dropdown(furnishing_options, label="Furnishing Description"), | |
gr.inputs.Dropdown(parking_options, label="Parking"), | |
gr.inputs.Number(default=1000, label="Property Size (in sqft)"), | |
gr.inputs.Dropdown(type_bhk_options, label="Type BHK"), | |
gr.inputs.Number(default=1, label="Floor"), | |
] | |
outputs = gr.outputs.Textbox() | |
# Create Gradio interface | |
gr.Interface(fn=interface, inputs=inputs, outputs=outputs, title="Hyderabad House Rent Prediction").launch() |