Gary3410 commited on
Commit
24ff201
·
1 Parent(s): 38e9902

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ caption_demo/FloorPlan21.png filter=lfs diff=lfs merge=lfs -text
37
+ caption_demo/FloorPlan221.png filter=lfs diff=lfs merge=lfs -text
38
+ caption_demo/FloorPlan224.png filter=lfs diff=lfs merge=lfs -text
39
+ caption_demo/FloorPlan24.png filter=lfs diff=lfs merge=lfs -text
40
+ caption_demo/FloorPlan321.png filter=lfs diff=lfs merge=lfs -text
41
+ caption_demo/FloorPlan323.png filter=lfs diff=lfs merge=lfs -text
42
+ caption_demo/FloorPlan422.png filter=lfs diff=lfs merge=lfs -text
43
+ caption_demo/FloorPlan424.png filter=lfs diff=lfs merge=lfs -text
app_test.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import time
3
+ import warnings
4
+ from pathlib import Path
5
+
6
+
7
+ # 配置hugface环境
8
+ from huggingface_hub import hf_hub_download
9
+ import gradio as gr
10
+ import os
11
+ import glob
12
+ import json
13
+
14
+ # os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
15
+ # torch.set_float32_matmul_precision("high")
16
+
17
+
18
+
19
+ def instruct_generate(
20
+ img_path: str = " ",
21
+ prompt: str = "What food do lamas eat?",
22
+ input: str = "",
23
+ max_new_tokens: int = 100,
24
+ top_k: int = 200,
25
+ temperature: float = 0.8,
26
+ ) -> None:
27
+ """Generates a response based on a given instruction and an optional input.
28
+ This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model.
29
+ See `finetune_adapter.py`.
30
+
31
+ Args:
32
+ prompt: The prompt/instruction (Alpaca style).
33
+ adapter_path: Path to the checkpoint with trained adapter weights, which are the output of
34
+ `finetune_adapter.py`.
35
+ input: Optional input (Alpaca style).
36
+ pretrained_path: The path to the checkpoint with pretrained LLaMA weights.
37
+ tokenizer_path: The tokenizer path to load.
38
+ quantize: Whether to quantize the model and using which method:
39
+ ``"llm.int8"``: LLM.int8() mode,
40
+ ``"gptq.int4"``: GPTQ 4-bit mode.
41
+ max_new_tokens: The number of generation steps to take.
42
+ top_k: The number of top most probable tokens to consider in the sampling process.
43
+ temperature: A value controlling the randomness of the sampling process. Higher values result in more random
44
+ """
45
+ output = [prompt, input, max_new_tokens, top_k, temperature]
46
+ print(output)
47
+ return output
48
+
49
+ # 配置具体参数
50
+
51
+ example_path = "example.json"
52
+ # 1024如果不够, 调整为512
53
+ max_seq_len = 1024
54
+ max_batch_size = 1
55
+
56
+ with open(example_path, 'r') as f:
57
+ content = f.read()
58
+ example_dict = json.loads(content)
59
+
60
+
61
+ def create_instruct_demo():
62
+ with gr.Blocks() as instruct_demo:
63
+ with gr.Row():
64
+ with gr.Column():
65
+ scene_img = gr.Image(label='Scene', type='filepath')
66
+ object_list = gr.Textbox(
67
+ lines=2, label="Input")
68
+
69
+ instruction = gr.Textbox(
70
+ lines=2, label="Instruction")
71
+ max_len = gr.Slider(minimum=1, maximum=512,
72
+ value=128, label="Max length")
73
+ with gr.Accordion(label='Advanced options', open=False):
74
+ temp = gr.Slider(minimum=0, maximum=1,
75
+ value=0.8, label="Temperature")
76
+ top_k = gr.Slider(minimum=100, maximum=300,
77
+ value=200, label="Top k")
78
+
79
+ run_botton = gr.Button("Run")
80
+
81
+ with gr.Column():
82
+ outputs = gr.Textbox(lines=10, label="Output")
83
+
84
+ inputs = [instruction, object_list, max_len, top_k, temp]
85
+
86
+ # 接下来设定具体的example格式
87
+ examples_img_list = glob.glob("caption_demo/*.png")
88
+ examples = []
89
+ for example_img_one in examples_img_list:
90
+ scene_name = os.path.basename(example_img_one).split(".")[0]
91
+ example_object_list = example_dict[scene_name]["input"]
92
+ example_instruction = example_dict[scene_name]["instruction"]
93
+ example_one = [example_img_one, example_object_list, example_instruction, 512, 0.8, 200]
94
+ examples.append(example_one)
95
+
96
+ gr.Examples(
97
+ examples=examples,
98
+ inputs=inputs,
99
+ outputs=outputs,
100
+ fn=instruct_generate,
101
+ cache_examples=os.getenv('SYSTEM') == 'spaces'
102
+ )
103
+ run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
104
+ return instruct_demo
105
+
106
+
107
+ # Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
108
+ description = """
109
+ # TaPA
110
+ The official demo for **Embodied Task Planning with Large Language Models**.
111
+ """
112
+
113
+ with gr.Blocks(css='style.css') as demo:
114
+ gr.Markdown(description)
115
+ with gr.TabItem("Instruction-Following"):
116
+ create_instruct_demo()
117
+
118
+ demo.queue(api_open=True, concurrency_count=1).launch()
119
+
120
+
caption_demo/FloorPlan21.png ADDED

Git LFS Details

  • SHA256: 67757caa36fd3c13d73a52c06063dee431b79307fafcae7df92e41d0b4e4c553
  • Pointer size: 132 Bytes
  • Size of remote file: 1.53 MB
caption_demo/FloorPlan221.png ADDED

Git LFS Details

  • SHA256: 0035e32394431fede7a27fb89b4d008da68fae3fd71b5bc5b32a0c249de24ea3
  • Pointer size: 132 Bytes
  • Size of remote file: 2.1 MB
caption_demo/FloorPlan224.png ADDED

Git LFS Details

  • SHA256: 99920c74a859725d9eb1c53e98dfa27448ae861402f55e7ef7e9487595863134
  • Pointer size: 132 Bytes
  • Size of remote file: 2.16 MB
caption_demo/FloorPlan24.png ADDED

Git LFS Details

  • SHA256: 22315c8999202e47f6eafff5d8ca6f6b5a2a80904efb942612feb08e5cd5d912
  • Pointer size: 132 Bytes
  • Size of remote file: 1.93 MB
caption_demo/FloorPlan321.png ADDED

Git LFS Details

  • SHA256: d6cf731deb3cefe5aae34e909b249eccac6484fb42f8bb88448103ca06606a92
  • Pointer size: 132 Bytes
  • Size of remote file: 2.84 MB
caption_demo/FloorPlan323.png ADDED

Git LFS Details

  • SHA256: c4b29a11ab5a6ba185d7ecf7a26e3a8e69cab71a1682600fb12b2e8998625b99
  • Pointer size: 132 Bytes
  • Size of remote file: 2.42 MB
caption_demo/FloorPlan422.png ADDED

Git LFS Details

  • SHA256: 4a97edd9c4f799c57ba05554d90fcf9f39eedb868f4bfdda1dfdf7230de4427a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.15 MB
caption_demo/FloorPlan424.png ADDED

Git LFS Details

  • SHA256: d92a1d835fa4cb8f28944f5a6f2792f749d0bda9189d754099d23d14a0cd8076
  • Pointer size: 132 Bytes
  • Size of remote file: 2.82 MB
example.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "FloorPlan21": {
3
+ "input": "[apple,chair,blender,sink,pottery,oven,egg,table,shredder_(for_paper),seashell,bread,doorknob,fork,plastic_bag,knife,radio_receiver,drawer,person,coffee_maker,inhaler,toaster,plate,cornice,knob,pear,dining_table,tomato,bottle,scale_(measuring_instrument),toilet_tissue,cushion,latch,scissors,soap,handle,balloon,clock,lightbulb,matchbox,refrigerator,trash_can,backpack,alarm_clock,vase,tape_(sticky_cloth_or_paper),printer,cover,faucet,gourd,pan_(for_cooking),ball,spatula,microwave_oven,dispenser,nailfile,cabinet,sweet_potato,lamp,microscope,pot,cup,suitcase,bowl,thermostat,fume_hood,hinge,mirror,spoon,box,]",
4
+ "instruction": "Can you clean the dishes?"
5
+ },
6
+ "FloorPlan24": {
7
+ "input": "[apple,chair,sink,oven,figurine,shredder_(for_paper),potholder,doorknob,truffle_(chocolate),fork,towel,stove,napkin,knife,drawer,hotplate,coffee_maker,avocado,chopping_board,stool,bolt,toaster,bowling_ball,hand_towel,plate,speaker_(stero_equipment),tag,piggy_bank,knob,dining_table,tomato,scale_(measuring_instrument),toaster_oven,pitcher_(vessel_for_liquid),painting,handle,wineglass,clock,automatic_washer,ice_maker,lightbulb,refrigerator,trash_can,tray,dishwasher,armoire,faucet,gourd,pan_(for_cooking),spatula,microwave_oven,mug,dispenser,cabinet,fire_extinguisher,kitchen_sink,television_set,lamp,cup,bowl,thermostat,water_jug,hinge,spoon,]",
8
+ "instruction": "Please make me an omelette."
9
+ },
10
+ "FloorPlan221": {
11
+ "input": "[chair,sofa,pen,figurine,table,dog,lampshade,doorknob,bed,toy,drawer,person,statue_(sculpture),flowerpot,stool,monitor_(computer_equipment)computer_monitor,desk,pillow,plate,speaker_(stero_equipment),mouse_(computer_equipment),knob,igniter,dining_table,cushion,painting,dragonfly,laptop_computer,remote_control,vase,trash_can,wall_socket,ashtray,coffee_table,card,computer_keyboard,bird,coaster,television_set,lamp,bowl,thermostat,hinge,curtain,box,]",
12
+ "instruction": "Could you please close the curtains?"
13
+ },
14
+ "FloorPlan224": {
15
+ "input": "[chair,sofa,figurine,table,crate,necklace,dog,dresser,lampshade,doorknob,horse,frisbee,deer,screwdriver,oil_lamp,drawer,sweater,person,statue_(sculpture),flowerpot,stool,dress,pole,monitor_(computer_equipment)computer_monitor,hat,easel,umbrella,desk,pillow,speaker_(stero_equipment),book,knob,fireplace,ottoman,dining_table,toilet_tissue,cushion,painting,latch,handle,bathtub,laptop_computer,remote_control,clock,lightbulb,candle,vase,trash_can,wall_socket,hose,coffee_table,computer_keyboard,spotlight,bird,cabinet,television_set,lamp,harmonium,cup,thermostat,newspaper,curtain,runner_(carpet),box,]",
16
+ "instruction": "Can you turn off the light?"
17
+ },
18
+ "FloorPlan321": {
19
+ "input": "[chair,sofa,figurine,table,quilt,bed,lampshade,doorknob,tissue_paper,headboard,button,pencil,drawer,place_mat,cigar_box,knitting_needle,monitor_(computer_equipment)computer_monitor,desk,pillow,chandelier,book,knob,armchair,ottoman,dining_table,notebook,cushion,painting,vent,laptop_computer,blanket,lightbulb,cellular_telephone,trash_can,alarm_clock,tape_(sticky_cloth_or_paper),faucet,card,computer_keyboard,coaster,nailfile,bicycle,mattress,lamp,car_(automobile),magazine,thermostat,heart,mirror,box,]",
20
+ "instruction": "Can you please hand me the pencil on the desk?"
21
+ },
22
+ "FloorPlan323": {
23
+ "input": "[chair,sofa,sink,dresser,lampshade,bed,doorknob,toy,teddy_bear,towel,headboard,drawer,place_mat,monitor_(computer_equipment)computer_monitor,desk,pillow,speaker_(stero_equipment),mouse_(computer_equipment),piggy_bank,book,cornice,dining_table,cushion,painting,cigarette_case,handle,laptop_computer,remote_control,candle,trash_can,wall_socket,armoire,corkboard,computer_keyboard,lamp,television_set,telephone,cup,hatbox,bowl,thermostat,hinge,mirror,runner_(carpet),box,]",
24
+ "instruction": "Can you pass me the remote control, please?"
25
+ },
26
+ "FloorPlan422": {
27
+ "input": "[knocker_(on_a_door),sink,hook,clothespin,doorknob,tissue_paper,oil_lamp,drawer,cistern,bottle_cap,desk,hand_towel,knob,bottle,dining_table,toilet_tissue,handle,bathtub,towel_rack,bath_mat,candle_holder,bat_(animal),toilet,wooden_spoon,candle,shower_head,refrigerator,trash_can,cover,hair_dryer,armoire,faucet,scrubbing_brush,dispenser,shower_curtain,cabinet,lamp,bath_towel,cup,thermostat,fume_hood,hinge,mirror,paper_towel,broom,box,]",
28
+ "instruction": "Open the Cabinet and give me the Soap Bottle"
29
+ },
30
+ "FloorPlan424": {
31
+ "input": "[sink,bucket,doorknob,towel,wine_bucket,cistern,washbasin,pipe,hand_towel,knob,bottle,toilet_tissue,soap,handle,towel_rack,candle_holder,lightbulb,candle,shower_head,crucifix,vase,cover,wall_socket,faucet,scrubbing_brush,dispenser,cabinet,lamp,bath_towel,cup,thermostat,hinge,mirror,toilet,eraser,]",
32
+ "instruction": "Please clean the sink"
33
+ }
34
+ }