Upload new.py
Browse files
new.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
# Load the face detector with the correct file path
|
9 |
+
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
10 |
+
# Load the emotion model
|
11 |
+
emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
|
12 |
+
emotion_model = tf.keras.models.load_model("model_emotion.h5")
|
13 |
+
emotion_model.load_weights("model_weights_new.h5")
|
14 |
+
print("Loaded emotion model from disk")
|
15 |
+
|
16 |
+
# Define the predict_img function
|
17 |
+
def predict_img(frame):
|
18 |
+
# Resize the image
|
19 |
+
frame = cv2.resize(frame, (1280, 720))
|
20 |
+
num_faces = face_detector.detectMultiScale(frame, scaleFactor=1.3, minNeighbors=5)
|
21 |
+
|
22 |
+
# Draw bounding boxes and annotate the image
|
23 |
+
for (x, y, w, h) in num_faces:
|
24 |
+
cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
|
25 |
+
roi_gray_frame = frame[y:y + h, x:x + w]
|
26 |
+
|
27 |
+
# Preprocess the input image
|
28 |
+
resized_img = cv2.resize(roi_gray_frame, (48, 48))
|
29 |
+
gray_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY)
|
30 |
+
input_img = np.expand_dims(gray_img, axis=-1) # Add the channel dimension
|
31 |
+
input_img = np.expand_dims(input_img, axis=0) # Add the batch dimension
|
32 |
+
|
33 |
+
# Normalize the image
|
34 |
+
input_img = input_img / 255.0
|
35 |
+
|
36 |
+
# Predict the emotions
|
37 |
+
emotion_prediction = emotion_model.predict(input_img)
|
38 |
+
maxindex = int(np.argmax(emotion_prediction))
|
39 |
+
emotion_label = emotion_dict[maxindex]
|
40 |
+
|
41 |
+
# Annotate the image with emotion label
|
42 |
+
cv2.putText(frame, emotion_label, (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
|
43 |
+
|
44 |
+
return frame
|
45 |
+
|
46 |
+
# Capture video from webcam
|
47 |
+
cap = cv2.VideoCapture(0)
|
48 |
+
|
49 |
+
while True:
|
50 |
+
ret, frame = cap.read()
|
51 |
+
if not ret:
|
52 |
+
break
|
53 |
+
|
54 |
+
annotated_frame = predict_img(frame)
|
55 |
+
cv2.imshow('Emotion Detection', annotated_frame)
|
56 |
+
|
57 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
58 |
+
break
|
59 |
+
|
60 |
+
cap.release()
|
61 |
+
cv2.destroyAllWindows()
|