Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,119 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import pytesseract
|
@@ -10,32 +125,40 @@ import requests
|
|
10 |
# Initialize sentence transformer model
|
11 |
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
# Function to
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
# Check if the response contains the expected format
|
27 |
-
if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
|
28 |
-
return response[0]['generated_text']
|
29 |
-
else:
|
30 |
-
# Log the response if something unexpected is returned
|
31 |
-
print("Unexpected response format:", response)
|
32 |
-
return "Sorry, I couldn't generate a response."
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Extract text from an image using Tesseract
|
41 |
def extract_text_from_image(filepath: str, languages: List[str]):
|
@@ -74,37 +197,38 @@ def evaluate_answer(image, languages):
|
|
74 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
75 |
grade = get_grade(similarity_score)
|
76 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
77 |
-
prompt=f"
|
78 |
return grade, similarity_score * 100, feedback, prompt
|
79 |
|
80 |
# Main interface function for Gradio
|
81 |
-
def gradio_interface(image, languages: List[str], prompt=""):
|
82 |
-
grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
|
83 |
-
response =
|
|
|
|
|
84 |
return grade, similarity_score, feedback, response
|
85 |
|
86 |
# Get available Tesseract languages
|
87 |
language_choices = pytesseract.get_languages()
|
88 |
|
89 |
# Define Gradio interface
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
-
|
110 |
-
|
|
|
1 |
|
2 |
+
# import gradio as gr
|
3 |
+
# from transformers import pipeline
|
4 |
+
# import pytesseract
|
5 |
+
# from sentence_transformers import SentenceTransformer, util
|
6 |
+
# from PIL import Image
|
7 |
+
# from typing import List
|
8 |
+
# import requests
|
9 |
+
|
10 |
+
# # Initialize sentence transformer model
|
11 |
+
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
12 |
+
|
13 |
+
# # Hugging Face API details
|
14 |
+
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
|
15 |
+
# headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}
|
16 |
+
|
17 |
+
# # Function to interact with Hugging Face API for GPT-2
|
18 |
+
# def query(payload):
|
19 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
20 |
+
# return response.json()
|
21 |
+
|
22 |
+
# # Function to generate text response from GPT-2 model using Hugging Face API
|
23 |
+
# def generate_response(prompt):
|
24 |
+
# response = query({"inputs": prompt})
|
25 |
+
|
26 |
+
# # Check if the response contains the expected format
|
27 |
+
# if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
|
28 |
+
# return response[0]['generated_text']
|
29 |
+
# else:
|
30 |
+
# # Log the response if something unexpected is returned
|
31 |
+
# print("Unexpected response format:", response)
|
32 |
+
# return "Sorry, I couldn't generate a response."
|
33 |
+
|
34 |
+
|
35 |
+
# # Function to generate text response from GPT-2 model using Hugging Face API
|
36 |
+
# # def generate_response(prompt):
|
37 |
+
# # response = query({"inputs": prompt})
|
38 |
+
# # return response[0]['generated_text']
|
39 |
+
|
40 |
+
# # Extract text from an image using Tesseract
|
41 |
+
# def extract_text_from_image(filepath: str, languages: List[str]):
|
42 |
+
# image = Image.open(filepath)
|
43 |
+
# lang_str = '+'.join(languages) # Join languages for Tesseract
|
44 |
+
# return pytesseract.image_to_string(image=image, lang=lang_str)
|
45 |
+
|
46 |
+
# # Function to get embeddings for text using SentenceTransformer
|
47 |
+
# def get_embedding(text):
|
48 |
+
# return model1.encode(text, convert_to_tensor=True)
|
49 |
+
|
50 |
+
# # Calculate similarity between two texts using cosine similarity
|
51 |
+
# def calculate_similarity(text1, text2):
|
52 |
+
# embedding1 = get_embedding(text1)
|
53 |
+
# embedding2 = get_embedding(text2)
|
54 |
+
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
55 |
+
# return similarity.item()
|
56 |
+
|
57 |
+
# # Assign grades based on similarity score
|
58 |
+
# def get_grade(similarity_score):
|
59 |
+
# if similarity_score >= 0.9:
|
60 |
+
# return 5
|
61 |
+
# elif similarity_score >= 0.8:
|
62 |
+
# return 4
|
63 |
+
# elif similarity_score >= 0.7:
|
64 |
+
# return 3
|
65 |
+
# elif similarity_score >= 0.6:
|
66 |
+
# return 2
|
67 |
+
# else:
|
68 |
+
# return 1
|
69 |
+
|
70 |
+
# # Function to evaluate student's answer by comparing it to a model answer
|
71 |
+
# def evaluate_answer(image, languages):
|
72 |
+
# student_answer = extract_text_from_image(image, languages)
|
73 |
+
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
74 |
+
# similarity_score = calculate_similarity(student_answer, model_answer)
|
75 |
+
# grade = get_grade(similarity_score)
|
76 |
+
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
77 |
+
# prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
|
78 |
+
# return grade, similarity_score * 100, feedback, prompt
|
79 |
+
|
80 |
+
# # Main interface function for Gradio
|
81 |
+
# def gradio_interface(image, languages: List[str], prompt=""):
|
82 |
+
# grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
|
83 |
+
# response = generate_response(prompt)
|
84 |
+
# return grade, similarity_score, feedback, response
|
85 |
+
|
86 |
+
# # Get available Tesseract languages
|
87 |
+
# language_choices = pytesseract.get_languages()
|
88 |
+
|
89 |
+
# # Define Gradio interface
|
90 |
+
# interface = gr.Interface(
|
91 |
+
# fn=gradio_interface,
|
92 |
+
# inputs=[
|
93 |
+
# gr.Image(type="filepath", label="Input"),
|
94 |
+
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
|
95 |
+
# gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
|
96 |
+
# ],
|
97 |
+
# outputs=[
|
98 |
+
# gr.Text(label="Grade"),
|
99 |
+
# gr.Number(label="Similarity Score (%)"),
|
100 |
+
# gr.Text(label="Feedback"),
|
101 |
+
# gr.Text(label="Generated Response")
|
102 |
+
# ],
|
103 |
+
# title="Automated Grading System",
|
104 |
+
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
105 |
+
# live=True
|
106 |
+
# )
|
107 |
+
|
108 |
+
# if __name__ == "__main__":
|
109 |
+
# interface.launch()
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
import os
|
116 |
+
from groq import Groq
|
117 |
import gradio as gr
|
118 |
from transformers import pipeline
|
119 |
import pytesseract
|
|
|
125 |
# Initialize sentence transformer model
|
126 |
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
127 |
|
128 |
+
# Initialize Groq client
|
129 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
|
|
130 |
|
131 |
+
# System prompt for Groq
|
132 |
+
system_prompt = {
|
133 |
+
"role": "system",
|
134 |
+
"content": "You are a useful assistant. You reply with efficient answers."
|
135 |
+
}
|
136 |
|
137 |
+
# Function to interact with Groq for generating response
|
138 |
+
async def chat_groq(message, history):
|
139 |
+
messages = [system_prompt]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
for msg in history:
|
142 |
+
messages.append({"role": "user", "content": str(msg[0])})
|
143 |
+
messages.append({"role": "assistant", "content": str(msg[1])})
|
144 |
+
|
145 |
+
messages.append({"role": "user", "content": str(message)})
|
146 |
+
|
147 |
+
response_content = ''
|
148 |
+
|
149 |
+
stream = client.chat.completions.create(
|
150 |
+
model="llama3-70b-8192",
|
151 |
+
messages=messages,
|
152 |
+
max_tokens=1024,
|
153 |
+
temperature=1.3,
|
154 |
+
stream=True
|
155 |
+
)
|
156 |
+
|
157 |
+
for chunk in stream:
|
158 |
+
content = chunk.choices[0].delta.content
|
159 |
+
if content:
|
160 |
+
response_content += chunk.choices[0].delta.content
|
161 |
+
yield response_content
|
162 |
|
163 |
# Extract text from an image using Tesseract
|
164 |
def extract_text_from_image(filepath: str, languages: List[str]):
|
|
|
197 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
198 |
grade = get_grade(similarity_score)
|
199 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
200 |
+
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
201 |
return grade, similarity_score * 100, feedback, prompt
|
202 |
|
203 |
# Main interface function for Gradio
|
204 |
+
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
|
205 |
+
grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
|
206 |
+
response = ""
|
207 |
+
async for result in chat_groq(prompt, history):
|
208 |
+
response = result # Get the Groq response
|
209 |
return grade, similarity_score, feedback, response
|
210 |
|
211 |
# Get available Tesseract languages
|
212 |
language_choices = pytesseract.get_languages()
|
213 |
|
214 |
# Define Gradio interface
|
215 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True) as demo:
|
216 |
+
interface = gr.ChatInterface(gradio_interface,
|
217 |
+
inputs=[
|
218 |
+
gr.Image(type="filepath", label="Input"),
|
219 |
+
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
|
220 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
|
221 |
+
],
|
222 |
+
outputs=[
|
223 |
+
gr.Text(label="Grade"),
|
224 |
+
gr.Number(label="Similarity Score (%)"),
|
225 |
+
gr.Text(label="Feedback"),
|
226 |
+
gr.Text(label="Generated Response")
|
227 |
+
],
|
228 |
+
title="Automated Grading System",
|
229 |
+
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
230 |
+
live=True)
|
|
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
+
demo.queue()
|
234 |
+
demo.launch()
|