Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,15 +7,6 @@ import gradio as gr
|
|
| 7 |
from transformers import pipeline
|
| 8 |
from extraction_service import ExtractionService
|
| 9 |
|
| 10 |
-
# Initialize the HF pipeline with smaller faster model
|
| 11 |
-
model_name = "declare-lab/flan-alpaca-small"
|
| 12 |
-
pipe = pipeline(
|
| 13 |
-
"text2text-generation",
|
| 14 |
-
model=model_name,
|
| 15 |
-
tokenizer=model_name,
|
| 16 |
-
device=-1 # CPU
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
# Load field extraction config
|
| 20 |
extractor = ExtractionService("fields_config.json")
|
| 21 |
|
|
@@ -36,6 +27,15 @@ def extract_text_from_pdf(pdf_stream: io.BytesIO) -> str:
|
|
| 36 |
except Exception as e:
|
| 37 |
return f"Error processing PDF: {str(e)}"
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Store extracted content
|
| 40 |
extracted_data_store = {"raw_text": "", "fields": {}}
|
| 41 |
|
|
@@ -69,18 +69,17 @@ def ask_question(question):
|
|
| 69 |
return "Upload and extract a PDF first."
|
| 70 |
|
| 71 |
context = json.dumps(extracted_data_store["fields"], indent=2)
|
| 72 |
-
prompt = f"
|
| 73 |
-
|
| 74 |
try:
|
| 75 |
-
# Using HF pipeline generate method for text generation
|
| 76 |
result = pipe(prompt, max_length=256, do_sample=False)
|
| 77 |
-
answer = result[0][
|
| 78 |
return answer.strip()
|
| 79 |
except Exception as e:
|
| 80 |
-
return f"
|
| 81 |
|
| 82 |
with gr.Blocks() as demo:
|
| 83 |
-
gr.Markdown("## π‘οΈ Insurance PDF Extractor & Q&A (
|
| 84 |
with gr.Row():
|
| 85 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 86 |
extract_btn = gr.Button("Extract")
|
|
|
|
| 7 |
from transformers import pipeline
|
| 8 |
from extraction_service import ExtractionService
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Load field extraction config
|
| 11 |
extractor = ExtractionService("fields_config.json")
|
| 12 |
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
return f"Error processing PDF: {str(e)}"
|
| 29 |
|
| 30 |
+
# Initialize Hugging Face pipeline with a small public model
|
| 31 |
+
model_name = "google/flan-t5-small"
|
| 32 |
+
pipe = pipeline(
|
| 33 |
+
"text2text-generation",
|
| 34 |
+
model=model_name,
|
| 35 |
+
tokenizer=model_name,
|
| 36 |
+
device=-1 # Use CPU; change to 0 if you want GPU
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
# Store extracted content
|
| 40 |
extracted_data_store = {"raw_text": "", "fields": {}}
|
| 41 |
|
|
|
|
| 69 |
return "Upload and extract a PDF first."
|
| 70 |
|
| 71 |
context = json.dumps(extracted_data_store["fields"], indent=2)
|
| 72 |
+
prompt = f"Context: {context}\nQuestion: {question}"
|
| 73 |
+
|
| 74 |
try:
|
|
|
|
| 75 |
result = pipe(prompt, max_length=256, do_sample=False)
|
| 76 |
+
answer = result[0]["generated_text"]
|
| 77 |
return answer.strip()
|
| 78 |
except Exception as e:
|
| 79 |
+
return f"Model inference error: {str(e)}"
|
| 80 |
|
| 81 |
with gr.Blocks() as demo:
|
| 82 |
+
gr.Markdown("## π‘οΈ Insurance PDF Extractor & Q&A (Using google/flan-t5-small)")
|
| 83 |
with gr.Row():
|
| 84 |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 85 |
extract_btn = gr.Button("Extract")
|