Spaces:
Sleeping
Sleeping
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TapasTokenizer, TFTapasForQuestionAnswering
|
2 |
+
import pandas as pd
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
|
6 |
+
def execute_query(query, csv_file):
|
7 |
+
a = datetime.datetime.now()
|
8 |
+
|
9 |
+
table = pd.read_csv(csv_file.name, delimiter=",")
|
10 |
+
table.fillna(0, inplace=True)
|
11 |
+
table = table.astype(str)
|
12 |
+
|
13 |
+
model_name = "google/tapas-base-finetuned-wtq"
|
14 |
+
model = TFTapasForQuestionAnswering.from_pretrained(model_name)
|
15 |
+
tokenizer = TapasTokenizer.from_pretrained(model_name)
|
16 |
+
|
17 |
+
queries = [query]
|
18 |
+
|
19 |
+
inputs = tokenizer(table=table, queries=queries, padding=True, return_tensors="tf",truncated=True)
|
20 |
+
outputs = model(**inputs)
|
21 |
+
|
22 |
+
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
23 |
+
inputs, outputs.logits, outputs.logits_aggregation
|
24 |
+
)
|
25 |
+
|
26 |
+
# let's print out the results:
|
27 |
+
id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}
|
28 |
+
aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices]
|
29 |
+
|
30 |
+
answers = []
|
31 |
+
for coordinates in predicted_answer_coordinates:
|
32 |
+
if len(coordinates) == 1:
|
33 |
+
# only a single cell:
|
34 |
+
answers.append(table.iat[coordinates[0]])
|
35 |
+
else:
|
36 |
+
# multiple cells
|
37 |
+
cell_values = []
|
38 |
+
for coordinate in coordinates:
|
39 |
+
cell_values.append(table.iat[coordinate])
|
40 |
+
answers.append(cell_values)
|
41 |
+
|
42 |
+
for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
|
43 |
+
if predicted_agg != "NONE":
|
44 |
+
answers.append(predicted_agg)
|
45 |
+
|
46 |
+
query_result = {
|
47 |
+
"query": query,
|
48 |
+
"result": answers
|
49 |
+
}
|
50 |
+
|
51 |
+
b = datetime.datetime.now()
|
52 |
+
print(b - a)
|
53 |
+
|
54 |
+
return query_result, table
|
55 |
+
|