Spaces:
Sleeping
Sleeping
Create question_answering.py
Browse files- question_answering.py +27 -0
question_answering.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertForQuestionAnswering
|
3 |
+
|
4 |
+
# Load the pre-trained model and tokenizer
|
5 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
6 |
+
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
|
7 |
+
|
8 |
+
def answer_query(question, context):
|
9 |
+
# Preprocess the question and context using the tokenizer
|
10 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
11 |
+
|
12 |
+
# Use the model for question answering
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
# Get start and end logits directly from model outputs
|
17 |
+
start_logits = outputs.start_logits
|
18 |
+
end_logits = outputs.end_logits
|
19 |
+
|
20 |
+
# Find the most likely answer span
|
21 |
+
answer_start = torch.argmax(start_logits)
|
22 |
+
answer_end = torch.argmax(end_logits) + 1
|
23 |
+
|
24 |
+
# Extract the answer from the context
|
25 |
+
answer = tokenizer.convert_tokens_to_string(context)[answer_start:answer_end]
|
26 |
+
|
27 |
+
return answer
|