Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# Define paths to models and load the scaler
|
9 |
+
model_paths = {
|
10 |
+
"Regressor_decision_tree": "multioutput_regressor_decision_tree.joblib",
|
11 |
+
"Regressor_ridge": "regressor_ridge.joblib",
|
12 |
+
"Regressor_elastic_net": "elastic_net_model.joblib",
|
13 |
+
"NN_6_Layers": "NN_Layers_6.keras",
|
14 |
+
"CNN": "cnn_model_bigger.keras",
|
15 |
+
"CNN_with_reductions": "cnn_model_bigger_with_reductions.keras"
|
16 |
+
}
|
17 |
+
scaler = joblib.load("scaler.joblib")
|
18 |
+
|
19 |
+
# Function to load models based on file extension
|
20 |
+
def load_model_by_type(path):
|
21 |
+
if path.endswith('.joblib'):
|
22 |
+
return joblib.load(path)
|
23 |
+
elif path.endswith('.keras'):
|
24 |
+
return load_model(path)
|
25 |
+
else:
|
26 |
+
raise ValueError(f"Unsupported file extension for file {path}")
|
27 |
+
|
28 |
+
# Load models with appropriate method
|
29 |
+
models = {name: load_model_by_type(path) for name, path in model_paths.items()}
|
30 |
+
|
31 |
+
|
32 |
+
def detect_objects(image, model_name):
|
33 |
+
model = models[model_name]
|
34 |
+
|
35 |
+
# Assuming Gradio passes image as a numpy array and checking if conversion is needed
|
36 |
+
if image.ndim == 3 and image.shape[2] == 3: # If the image is RGB
|
37 |
+
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Convert to grayscale using OpenCV
|
38 |
+
else:
|
39 |
+
image_gray = image # Use the image as is if already grayscale
|
40 |
+
|
41 |
+
# Check if the model requires CNN specific preprocessing
|
42 |
+
if model_name in ["CNN_model", "CNN_with_reductions"]:
|
43 |
+
image_processed = np.array(image_gray)
|
44 |
+
image_processed = image_processed.reshape(1, image_gray.shape[0], image_gray.shape[1], 1)
|
45 |
+
image_processed = image_processed.astype('float32')
|
46 |
+
image_processed /= 255 # Normalize pixel values
|
47 |
+
else:
|
48 |
+
# Assuming other models might expect flattened, scaled input
|
49 |
+
image_processed = image_gray.flatten().reshape(1, -1)
|
50 |
+
image_processed = scaler.transform(image_processed)
|
51 |
+
|
52 |
+
# Make prediction
|
53 |
+
predictions = model.predict(image_processed)
|
54 |
+
x, y, width, height = predictions[0]
|
55 |
+
|
56 |
+
# Draw bounding box on a copy of the original image (converted back to RGB for color drawing)
|
57 |
+
original_image_rgb = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Ensure image is in RGB
|
58 |
+
cv2.rectangle(original_image_rgb, (int(x), int(y)), (int(x + width), int(y + height)), (0, 255, 0), 2)
|
59 |
+
|
60 |
+
return Image.fromarray(original_image_rgb)
|
61 |
+
|
62 |
+
# Gradio interface setup
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=detect_objects,
|
65 |
+
inputs=[gr.components.Image(), gr.components.Dropdown(list(model_paths.keys()))],
|
66 |
+
outputs=gr.components.Image(),
|
67 |
+
title="Object Detection",
|
68 |
+
description="Select a model and upload an image to detect objects."
|
69 |
+
)
|
70 |
+
|
71 |
+
iface.launch(show_error=True, share=True, debug=True)
|