Gainward777 commited on
Commit
aef179f
·
verified ·
1 Parent(s): 90a6082

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -129
app.py CHANGED
@@ -1,142 +1,114 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
  import torch
7
 
8
- device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
 
10
 
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
 
15
 
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
- MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
-
28
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
 
40
- return image, seed
41
-
42
- examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
- ]
47
-
48
- css="""
49
- #col-container {
50
- margin: 0 auto;
51
- max-width: 640px;
52
- }
53
- """
54
-
55
- with gr.Blocks(css=css) as demo:
56
 
57
- with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
- seed = gr.Slider(
86
- label="Seed",
87
- minimum=0,
88
- maximum=MAX_SEED,
89
- step=1,
90
- value=0,
91
- )
92
-
93
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
- with gr.Row():
96
-
97
- width = gr.Slider(
98
- label="Width",
99
- minimum=256,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=1024, #Replace with defaults that work for your model
103
- )
104
-
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024, #Replace with defaults that work for your model
111
- )
112
-
113
- with gr.Row():
114
-
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=2, #Replace with defaults that work for your model
129
- )
130
 
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
- gr.on(
136
- triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
140
- )
141
-
142
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
+ #import random
4
+ import spaces #[uncomment to use ZeroGPU]
5
+ #from diffusers import DiffusionPipeline
6
  import torch
7
 
8
+ from diffusers import AutoPipelineForInpainting
9
+ from diffusers.utils import load_image
10
+ from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
11
 
12
+ #import cv2
13
+ #import matplotlib.pyplot as plt
14
+ from PIL import Image
15
+ import os
16
+ import gc
17
 
 
 
18
 
19
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
 
20
 
21
+ GDINO_MODEL_NAME="IDEA-Research/grounding-dino-tiny"
22
+ SAM_MODEL_NAME="facebook/sam-vit-base"
23
 
24
+ GDINO=pipeline(model=GDINO_MODEL_NAME, task="zero-shot-object-detection", device=DEVICE)
25
+ SAM=AutoModelForMaskGeneration.from_pretrained(SAM_MODEL_NAME).to(DEVICE)
26
+ SAM_PROCESSOR=AutoProcessor.from_pretrained(SAM_MODEL_NAME)
27
+
28
+ SD_MODEL="diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
29
+ SD_PIPLINE = AutoPipelineForInpainting.from_pretrained(SD_MODEL, torch_dtype=torch.float16).to(DEVICE)
30
+ IP_ADAPTER="h94/IP-Adapter"
31
+ SUB_FOLDER="sdxl_models"
32
+ IP_WEIGHT_NAME="ip-adapter_sdxl.bin"
33
+ SD_PIPLINE.load_ip_adapter(IP_ADAPTER, subfolder=SUB_FOLDER, weight_name=IP_WEIGHT_NAME)
34
+ IP_SCALE=0.6
35
+ SD_PIPLINE.set_ip_adapter_scale(IP_SCALE)
36
+
37
+ GEN_STEPS=100
38
+
39
+
40
+ def refine_masks(masks: torch.BoolTensor)->np.array:
41
+ masks = masks.permute(0, 2, 3, 1)
42
+ masks = masks.float().mean(axis=-1)
43
+ return masks.cpu().numpy()
44
+
45
+
46
+ def get_boxes(detections:list)-> list:
47
+ boxes = []
48
+ for det in detections:
49
+ boxes.append([det['box']['xmin'], det['box']['ymin'],
50
+ det['box']['xmax'], det['box']['ymax']])
51
+ return [boxes]
52
+
53
+
54
+ def get_mask(img:Image, prompt:str, d_model:pipeline, s_model:AutoModelForMaskGeneration,
55
+ s_processor:AutoProcessor, device:str, threshold:float = 0.3)-> np.array:
56
 
57
+ labels = [label if label.endswith(".") else label+"." for label in ['face', prompt]]
58
+ dets=d_model(img, candidate_labels=labels, threshold=threshold)
59
+
60
+ boxes = get_boxes(dets)
61
+ inputs=s_processor(images=img, input_boxes=boxes, return_tensors="pt").to(DEVICE)
62
+ outputs = s_model(**inputs)
 
 
 
63
 
64
+ masks = s_processor.post_process_masks(
65
+ masks=outputs.pred_masks,
66
+ original_sizes=inputs.original_sizes,
67
+ reshaped_input_sizes=inputs.reshaped_input_sizes
68
+ )[0]
69
+
70
+ return refine_masks(masks)
71
+
72
+
73
+ def generate_result(model_img:str, cloth_img:str,
74
+ masks: np.array, prompt:str, sd_pipline:AutoPipelineForInpainting, n_steps:int=100)->Image:
 
 
 
 
 
75
 
76
+ width, height = model_img.size
77
+
78
+ cloth_mask=masks[1] #np.array(masks[1],dtype=np.float32)
79
+ generator = torch.Generator(device="cpu").manual_seed(4)
80
+ images = sd_pipline(
81
+ prompt=prompt,
82
+ image=model_img,
83
+ mask_image=cloth_mask,
84
+ ip_adapter_image=cloth_img,
85
+ generator=generator,
86
+ num_inference_steps=n_steps,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
+ ).images
89
+
90
+ return images[0].resize((width, height))
91
+
92
+
93
+ @spaces.GPU
94
+ def run(model_img:Image, cloth_img:Image, cloth_class:str, close_description:str)->Image:
95
+ masks = get_mask(model_img, cloth_class, GDINO, SAM, SAM_PROCESSOR, DEVICE) #GSAM2)
96
+ result = generate_result(model_img, cloth_img, masks, close_description, SD_PIPLINE, GEN_STEPS)
97
+ gc.collect()
98
+ torch.cuda.empty_cache()
99
+ return result
100
+
101
+
102
+ gr.Interface(
103
+ run,
104
+ title = 'Virtual Try-On',
105
+ inputs=[
106
+ gr.Image(sources = 'upload', label='Model image', type = 'pil'),
107
+ gr.Image(sources = 'upload', label='Cloth image', type = 'pil'),
108
+ gr.Textbox(label = 'Cloth class'),
109
+ gr.Textbox(label = 'Close description')
110
+ ],
111
+ outputs = [
112
+ gr.Image()
113
+ ]
114
+ ).launch(debug=True,share=True)